Spaces:
Sleeping
Sleeping
Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: π’
|
4 |
colorFrom: purple
|
5 |
colorTo: yellow
|
@@ -8,6 +8,134 @@ sdk_version: 5.31.0
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: TVOG Analysis Dashboard
|
3 |
emoji: π’
|
4 |
colorFrom: purple
|
5 |
colorTo: yellow
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
+
short_description: 'TVOG pricing: Monte Carlo vs. Black-Scholes tools.'
|
12 |
---
|
13 |
|
14 |
+
# TVOG Analysis Dashboard π
|
15 |
+
|
16 |
+
An interactive dashboard for analyzing Time Value of Options and Guarantees (TVOG) in Variable Annuity products with Guaranteed Minimum Accumulation Benefits (GMAB).
|
17 |
+
|
18 |
+
[](https://huggingface.co/spaces/alidenewade/tvog-analysis-dashboard)
|
19 |
+
|
20 |
+
## π― Overview
|
21 |
+
|
22 |
+
This dashboard provides a comprehensive comparison between **Monte Carlo simulation** and **Black-Scholes-Merton analytical solutions** for pricing variable annuity guarantees. It's designed specifically for actuaries, finance professionals, economists, and academics working in insurance and financial risk management.
|
23 |
+
|
24 |
+
## β¨ Key Features
|
25 |
+
|
26 |
+
### π§ Interactive Controls
|
27 |
+
- **Monte Carlo Parameters**: Adjustable scenario counts (1K-50K), risk-free rates, volatility levels
|
28 |
+
- **Product Configuration**: Customizable sum assured, policy counts, and maturity periods
|
29 |
+
- **Model Point Analysis**: Flexible premium ranges with configurable test points
|
30 |
+
|
31 |
+
### π Four Analysis Modules
|
32 |
+
|
33 |
+
1. **TVOG Comparison**: Side-by-side Monte Carlo vs Black-Scholes results with convergence ratios
|
34 |
+
2. **Simulation Paths**: Account value trajectory visualization with guarantee levels
|
35 |
+
3. **Distribution Analysis**: Statistical distributions of final values and GMAB payouts
|
36 |
+
4. **Convergence Analysis**: Monte Carlo convergence validation against analytical solutions
|
37 |
+
|
38 |
+
### π Professional Output
|
39 |
+
- **Results Table**: Detailed numerical comparison data
|
40 |
+
- **Real-time Updates**: Dynamic recalculation with parameter changes
|
41 |
+
- **Statistical Overlays**: Theoretical distributions and error metrics
|
42 |
+
- **Export-Ready Visualizations**: High-quality plots for presentations
|
43 |
+
|
44 |
+
## π Getting Started
|
45 |
+
|
46 |
+
### Online Usage
|
47 |
+
Simply click the "Open in Spaces" badge above to access the live dashboard - no installation required!
|
48 |
+
|
49 |
+
### Local Installation
|
50 |
+
```bash
|
51 |
+
git clone https://huggingface.co/spaces/alidenewade/tvog-analysis-dashboard
|
52 |
+
cd tvog-analysis-dashboard
|
53 |
+
pip install -r requirements.txt
|
54 |
+
python app.py
|
55 |
+
```
|
56 |
+
|
57 |
+
## π¬ Technical Background
|
58 |
+
|
59 |
+
### Mathematical Foundation
|
60 |
+
The dashboard implements:
|
61 |
+
- **Geometric Brownian Motion** for account value simulation: `dS/S = rΒ·dt + Ο·Ρ·βdt`
|
62 |
+
- **Black-Scholes-Merton Formula** for European put option pricing
|
63 |
+
- **Risk-Neutral Valuation** with Monte Carlo scenarios
|
64 |
+
|
65 |
+
### Key Assumptions
|
66 |
+
- No policy decrements (mortality/lapse rates = 0)
|
67 |
+
- No management fees for clean comparison
|
68 |
+
- Constant risk-free rate environment
|
69 |
+
- Log-normal asset return distribution
|
70 |
+
|
71 |
+
## π₯ Target Audience
|
72 |
+
|
73 |
+
### Primary Users
|
74 |
+
- **Actuaries**: Pricing and reserving analysis for variable annuity products
|
75 |
+
- **Risk Managers**: Quantifying guarantee costs and capital requirements
|
76 |
+
- **Product Developers**: Designing and testing new guarantee features
|
77 |
+
- **Academics**: Teaching and researching financial guarantee valuation
|
78 |
+
|
79 |
+
### Use Cases
|
80 |
+
- **Product Pricing**: Determine fair value of GMAB guarantees
|
81 |
+
- **Model Validation**: Compare simulation results with analytical benchmarks
|
82 |
+
- **Sensitivity Analysis**: Test impact of parameter changes on guarantee costs
|
83 |
+
- **Educational Tool**: Demonstrate Monte Carlo vs analytical pricing methods
|
84 |
+
|
85 |
+
## π Methodology
|
86 |
+
|
87 |
+
### Monte Carlo Simulation
|
88 |
+
- Generates thousands of risk-neutral scenarios
|
89 |
+
- Simulates account value paths using geometric Brownian motion
|
90 |
+
- Calculates present value of guarantee payouts at maturity
|
91 |
+
- Provides statistical confidence through large sample sizes
|
92 |
+
|
93 |
+
### Black-Scholes-Merton Benchmark
|
94 |
+
- Analytical solution for European put option pricing
|
95 |
+
- Provides exact theoretical value for comparison
|
96 |
+
- Validates Monte Carlo convergence and accuracy
|
97 |
+
- Offers computational efficiency for sensitivity analysis
|
98 |
+
|
99 |
+
## ποΈ Parameter Guide
|
100 |
+
|
101 |
+
### Critical Parameters
|
102 |
+
- **Scenarios**: Higher counts improve accuracy but increase computation time
|
103 |
+
- **Volatility**: Key driver of option value - higher volatility increases TVOG
|
104 |
+
- **Risk-Free Rate**: Affects both drift and discounting of future payouts
|
105 |
+
- **Moneyness**: Initial account value relative to guarantee level
|
106 |
+
|
107 |
+
### Recommended Settings
|
108 |
+
- **For Quick Analysis**: 5,000-10,000 scenarios
|
109 |
+
- **For Production**: 50,000+ scenarios
|
110 |
+
- **For Presentations**: 10,000 scenarios (good balance of accuracy/speed)
|
111 |
+
|
112 |
+
## π Educational Value
|
113 |
+
|
114 |
+
This dashboard serves as an excellent educational tool for:
|
115 |
+
- **Understanding Monte Carlo Methods** in financial modeling
|
116 |
+
- **Comparing Simulation vs Analytical** approaches
|
117 |
+
- **Visualizing Financial Risk** through interactive plots
|
118 |
+
- **Learning Option Pricing Theory** in insurance contexts
|
119 |
+
|
120 |
+
## οΏ½οΏ½οΏ½οΏ½ Contributing
|
121 |
+
|
122 |
+
Found a bug or have suggestions? Feel free to:
|
123 |
+
- Open an issue on the repository
|
124 |
+
- Submit a pull request with improvements
|
125 |
+
- Share feedback through the Hugging Face community tab
|
126 |
+
|
127 |
+
## π License
|
128 |
+
|
129 |
+
This project is open source and available under the MIT License.
|
130 |
+
|
131 |
+
## π Acknowledgments
|
132 |
+
|
133 |
+
Based on the lifelib savings library example, which demonstrates advanced actuarial modeling techniques for variable annuity products.
|
134 |
+
|
135 |
+
---
|
136 |
+
|
137 |
+
**Built with β€οΈ for the actuarial and finance community**
|
138 |
+
|
139 |
+
*For technical support or collaboration opportunities, connect through Hugging Face!*
|
140 |
+
|
141 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|