alidenewade's picture
Update README.md
c455090 verified
---
title: Hull-White Simulator
emoji: πŸ“Š
colorFrom: blue
colorTo: indigo
sdk: gradio
sdk_version: 5.31.0
app_file: app.py
pinned: false
license: mit
tags:
- actuarial
- finance
- stochastic-models
- monte-carlo
- interest-rates
- quantitative-finance
- gradio
- dashboard
- hull-white
- risk-management
short_description: Simulate Hull-White interest rate paths and dynamics.
---
# πŸ“Š Hull-White Interest Rate Model Dashboard
An interactive web dashboard for exploring the Hull-White short rate model, designed specifically for actuaries and financial professionals.
[![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg)](https://huggingface.co/spaces/alidenewade/hull-white-simulator)
## 🎯 Overview
The Hull-White model is a widely-used short rate model in quantitative finance, particularly valuable for:
- **Interest rate derivatives pricing**
- **Risk management and ALM**
- **Solvency II capital calculations**
- **Insurance liability valuation**
This dashboard provides an intuitive interface to explore the model's behavior through Monte Carlo simulations.
## πŸ“ˆ Model Description
The Hull-White model follows the stochastic differential equation:
$$dr(t) = (ΞΈ(t) - ar(t))dt + ΟƒdW$$
Where:
- `r(t)` = instantaneous short rate at time t
- `a` = mean reversion speed parameter
- `Οƒ` = volatility parameter
- `ΞΈ(t)` = time-dependent drift function
- `dW` = Wiener process increment
## πŸš€ Features
### Interactive Visualizations
- **πŸ“Š Short Rate Paths**: Visualize multiple simulated interest rate trajectories
- **πŸ“‰ Mean Convergence**: Compare Monte Carlo means against theoretical expectations
- **πŸ“ˆ Variance Analysis**: Examine variance convergence properties
- **πŸ’° Discount Factors**: Analyze zero-coupon bond pricing convergence
- **πŸ” Parameter Sensitivity**: Study the critical Οƒ/a ratio effects
- **πŸ“‹ Statistics Table**: Summary statistics at key time points
### Adjustable Parameters
| Parameter | Range | Description |
|-----------|-------|-------------|
| Scenarios | 100 - 10,000 | Number of Monte Carlo paths |
| Time Horizon | 5 - 50 years | Simulation time length |
| Time Steps | 100 - 500 | Discretization granularity |
| Mean Reversion (a) | 0.01 - 0.5 | Speed of mean reversion |
| Volatility (Οƒ) | 0.01 - 0.3 | Interest rate volatility |
| Initial Rate (rβ‚€) | 0.01 - 0.15 | Starting interest rate |
## πŸŽ›οΈ How to Use
1. **Adjust Model Parameters**: Use the sliders in the left panel to modify Hull-White parameters
2. **Explore Visualizations**: Click through the tabs to see different aspects of the model
3. **Analyze Convergence**: Pay special attention to the Οƒ/a ratio - values > 1 show poor convergence
4. **Compare Theory vs Practice**: Observe how simulated results converge to theoretical expectations
5. **Generate Statistics**: Review the summary table for quantitative analysis
## πŸ“Š Key Insights
### Convergence Properties
- **Οƒ/a < 1**: Good Monte Carlo convergence
- **Οƒ/a β‰ˆ 1**: Moderate convergence issues
- **Οƒ/a > 1**: Poor convergence, especially for discount factors
### Practical Considerations
- **More scenarios** improve convergence but increase computation time
- **Higher volatility** requires more scenarios for stable results
- **Longer time horizons** show more pronounced convergence issues
## πŸ”§ Technical Implementation
### Model Features
- **Gaussian Process**: Exploits Hull-White's analytical properties
- **Conditional Moments**: Uses exact conditional mean and variance formulas
- **Vector Operations**: Efficient numpy-based simulations
- **Reproducible Results**: Fixed random seed for consistency
### Performance Optimized
- Real-time parameter updates
- Efficient matrix operations
- Responsive visualization updates
- Memory-efficient data handling
## πŸ“š Educational Value
Perfect for:
- **University Finance Courses**: Teaching stochastic interest rate models
- **Actuarial Training**: Understanding ALM and risk management
- **Professional Development**: Exploring quantitative finance concepts
- **Model Validation**: Testing parameter sensitivity and convergence
## πŸŽ“ Theoretical Background
The implementation follows established literature:
- **Brigo & Mercurio**: Interest Rate Models - Theory and Practice
- **Glasserman**: Monte Carlo Methods in Financial Engineering
- **Hull**: Options, Futures, and Other Derivatives
### Key Mathematical Properties
- **Mean**: E[r(t)|β„±β‚›] = r(s)e^(-a(t-s)) + Ξ±(t) - Ξ±(s)e^(-a(t-s))
- **Variance**: Var[r(t)|β„±β‚›] = (σ²/2a)(1 - e^(-2a(t-s)))
- **Alpha Function**: Ξ±(t) = f^M(0,t) + (σ²/2aΒ²)(1-e^(-at))Β²
## πŸ› οΈ Installation & Deployment
### Local Development
```bash
# Clone the repository
git clone https://github.com/alidenewade/hull-white-dashboard.git
cd hull-white-dashboard
# Install dependencies
pip install -r requirements.txt
# Run the application
python app.py