File size: 13,767 Bytes
243dde0 845bf0b 243dde0 f182455 3546c93 f182455 845bf0b f182455 3546c93 f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 3546c93 f182455 3546c93 f182455 3546c93 f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 845bf0b f182455 3546c93 f182455 d337468 f182455 3546c93 845bf0b f182455 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
---
title: Drug Discovery Pipeline
emoji: π
colorFrom: purple
colorTo: green
sdk: docker
pinned: false
license: mit
short_description: AI-Powered Drug Discovery Pipeline Demo
---
# π¬ AI-Powered Drug Discovery Pipeline
<div align="center">
[](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline)
[](https://opensource.org/licenses/MIT)
[](https://www.python.org/)
[](https://www.docker.com/)
**An interactive demonstration of how artificial intelligence and computational tools can accelerate the drug discovery process from target identification to post-market surveillance.**
[π **Try Live Demo**](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) β’ [π **Documentation**](#-overview) β’ [π οΈ **Installation**](#-installation--usage) β’ [π€ **Contribute**](#-contributing)
</div>
---
## π― Overview
This comprehensive application integrates the four major phases of pharmaceutical drug development into a single, interactive web interface. Built with cutting-edge AI and computational biology tools, it demonstrates how modern technology can accelerate and optimize the traditionally lengthy drug discovery process.
### π Pipeline Phases
<table>
<tr>
<td width="25%" align="center">
**π― Phase 1**
<br>
**Discovery & Target ID**
<br>
<sub>Protein analysis & compound screening</sub>
</td>
<td width="25%" align="center">
**π§ͺ Phase 2**
<br>
**Lead Generation**
<br>
<sub>Virtual screening & ADMET prediction</sub>
</td>
<td width="25%" align="center">
**π¬ Phase 3**
<br>
**Preclinical Development**
<br>
<sub>Molecular analysis & toxicity testing</sub>
</td>
<td width="25%" align="center">
**π Phase 4**
<br>
**Implementation**
<br>
<sub>Regulatory docs & pharmacovigilance</sub>
</td>
</tr>
</table>
---
## β¨ Key Features
### π― **Phase 1: Discovery & Target Identification**
- **𧬠Protein Structure Fetching** - Retrieve 3D structures from PDB database
- **π FASTA Sequence Analysis** - Fetch and analyze protein sequences from NCBI
- **π Interactive 3D Visualization** - Explore protein structures with py3Dmol
- **βοΈ Molecular Property Calculation** - Compute physicochemical properties using RDKit
- **π Drug-Likeness Assessment** - Evaluate compounds using Lipinski's Rule of Five
- **π Properties Dashboard** - Visualize molecular properties with interactive plots
### π§ͺ **Phase 2: Lead Generation & Optimization**
- **π― Virtual Screening Simulation** - Rank compounds by predicted binding affinity
- **π ADMET Prediction** - Assess Absorption, Distribution, Metabolism, Excretion, and Toxicity
- **π¬ 2D/3D Molecular Visualization** - Interactive molecule viewers with dark theme
- **π Protein-Ligand Interaction** - Visualize binding sites and molecular interactions
- **π Lead Compound Analysis** - Analyze drugs like Oseltamivir, Zanamivir, Aspirin, and Ibuprofen
### π¬ **Phase 3: Preclinical Development**
- **π Comprehensive Property Analysis** - Extended molecular descriptor calculations
- **π€ AI-Powered Toxicity Prediction** - Machine learning model for toxicity risk assessment
- **𧬠Advanced Compound Profiling** - Analysis of clinical candidates including Remdesivir and Penicillin G
- **π¨ 3D Molecular Gallery** - Interactive visualization of compound libraries
### π **Phase 4: Implementation & Post-Market**
- **π Regulatory Documentation** - AI/ML model documentation templates for FDA submission
- **β οΈ Pharmacovigilance Simulation** - Real-world data analysis for adverse event detection
- **π‘οΈ Ethical Framework** - Guidelines for responsible AI in healthcare
- **π Adverse Event Analysis** - Statistical analysis and visualization of safety data
---
## π οΈ Technical Stack
<div align="center">
### **Core Technologies**
| Category | Technologies |
|----------|-------------|
| **π₯οΈ Framework** |  |
| **π§ͺ Cheminformatics** |  |
| **𧬠Bioinformatics** |  |
| **π¨ Visualization** |   |
| **π€ Machine Learning** |  |
### **Data Sources**
| Source | Description |
|--------|-------------|
| **ποΈ PDB** | Protein Data Bank - 3D protein structures |
| **𧬠NCBI** | Protein sequences and biological data |
| **π ChEMBL** | Bioactivity database (referenced) |
</div>
---
## π Installation & Usage
### π **Quick Start - Hugging Face Spaces**
The easiest way to explore the pipeline:
```bash
π https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline
```
> **No installation required!** Simply click the link above to start exploring.
### π» **Local Development**
#### **Prerequisites**
- Python 3.8 or higher
- Git
#### **Setup**
```bash
# π₯ Clone the repository
git clone <repository-url>
cd drug-discovery-pipeline
# π§ Create virtual environment (recommended)
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# π¦ Install dependencies
pip install -r requirements.txt
# π Launch the application
streamlit run app.py
```
#### **Access the Application**
```
π Local URL: http://localhost:8501
```
### π³ **Docker Deployment**
#### **Option 1: Quick Run**
```bash
# πββοΈ Run directly from Docker Hub (if available)
docker run -p 8501:8501 alidenewade/drug-discovery-pipeline
```
#### **Option 2: Build from Source**
```bash
# π¨ Build the Docker image
docker build -t drug-discovery-pipeline .
# π Run the container
docker run -p 8501:8501 drug-discovery-pipeline
```
#### **Docker Compose (Advanced)**
```yaml
# docker-compose.yml
version: '3.8'
services:
drug-discovery:
build: .
ports:
- "8501:8501"
environment:
- STREAMLIT_SERVER_PORT=8501
volumes:
- ./data:/app/data # Optional: for persistent data
```
```bash
# π³ Deploy with Docker Compose
docker-compose up -d
```
---
## π Dependencies
<details>
<summary><strong>π¦ Click to view complete requirements.txt</strong></summary>
```txt
# π₯οΈ Web Framework
streamlit>=1.28.0
# π Data Processing
pandas>=1.5.0
numpy>=1.24.0
# π Visualization
matplotlib>=3.6.0
seaborn>=0.12.0
plotly>=5.15.0
# π Network & APIs
requests>=2.28.0
# πΌοΈ Image Processing
pillow>=9.5.0
# π§ͺ Cheminformatics
rdkit>=2023.3.1
# 𧬠Bioinformatics
biopython>=1.81
# π€ Machine Learning
scikit-learn>=1.3.0
# π¨ 3D Molecular Visualization
py3dmol>=2.0.0
# π§ Utilities
streamlit-option-menu>=0.3.6
streamlit-aggrid>=0.3.4
```
</details>
---
## π― Use Cases & Applications
<div align="center">
| π **Educational** | π¬ **Research** | π **Industry** |
|-------------------|-----------------|------------------|
| Drug discovery training | Proof of concept demos | Pipeline optimization |
| Cheminformatics education | Method validation | AI strategy planning |
| Bioinformatics learning | Collaborative research | Regulatory compliance |
| AI in healthcare | Publication support | Risk assessment |
</div>
### π **Educational Applications**
- **π University Courses** - Pharmaceutical sciences, computational biology
- **π©βπ« Training Programs** - Professional development in drug discovery
- **π Self-Learning** - Interactive exploration of drug development concepts
- **π― Workshops** - Hands-on demonstrations for conferences and seminars
### π¬ **Research Applications**
- **π‘ Hypothesis Generation** - Explore structure-activity relationships
- **π§ͺ Method Development** - Test computational approaches
- **π Data Visualization** - Create publication-ready figures
- **π€ Collaboration** - Share analyses with research teams
---
## π¬ Scientific Methodology
### **𧬠Molecular Analysis Framework**
| Method | Description | Implementation |
|--------|-------------|----------------|
| **π Lipinski's Rule of Five** | Drug-likeness assessment | RDKit molecular descriptors |
| **π ADMET Profiling** | Pharmacokinetic predictions | Machine learning models |
| **β οΈ Toxicity Modeling** | Safety risk assessment | Ensemble ML algorithms |
| **π SAR Analysis** | Structure-activity relationships | Statistical correlation analysis |
### **π Data Integration Pipeline**
```mermaid
graph LR
A[𧬠Structural Data] --> D[π Integration Engine]
B[π Chemical Data] --> D
C[π Biological Data] --> D
D --> E[π€ AI Analysis]
E --> F[π Results Dashboard]
```
---
## β οΈ Important Disclaimers
<div align="center">
> **π¨ FOR EDUCATIONAL AND RESEARCH PURPOSES ONLY**
</div>
| β οΈ **Limitation** | π **Details** |
|-------------------|----------------|
| **π Educational Tool** | Demonstration purposes only, not for actual drug development |
| **π² Simulated Data** | Some analyses use simulated data for illustration |
| **π Regulatory Compliance** | Consult regulatory agencies for actual submissions |
| **π¨ββοΈ Professional Use** | Real development requires validated, regulated systems |
| **π¬ Research Grade** | Requires validation for production use |
---
## π€ Contributing
We welcome contributions from the community! Here's how you can help:
### **π οΈ Development Guidelines**
```bash
# π΄ Fork the repository
git fork https://github.com/username/drug-discovery-pipeline
# πΏ Create a feature branch
git checkout -b feature/amazing-feature
# π» Make your changes
# ... code changes ...
# β
Test your changes
python -m pytest tests/
# π Commit your changes
git commit -m "Add amazing feature"
# π Push to your branch
git push origin feature/amazing-feature
# π Create a Pull Request
```
### **π Contribution Areas**
- **π Bug Fixes** - Fix issues and improve stability
- **β¨ New Features** - Add new analysis methods or visualizations
- **π Documentation** - Improve README, add tutorials
- **π§ͺ Testing** - Expand test coverage
- **π¨ UI/UX** - Enhance user interface and experience
- **β‘ Performance** - Optimize for speed and memory usage
### **π Code Standards**
- **π Python Style** - Follow PEP 8 guidelines
- **π Documentation** - Add docstrings and comments
- **π§ͺ Testing** - Include unit tests for new features
- **π§ Type Hints** - Use type annotations where applicable
---
## π Support & Community
<div align="center">
### **π¬ Get Help**
[](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline/discussions)
</div>
| π **Issue Type** | π **Where to Go** |
|------------------|-------------------|
| **π Bug Reports** | GitHub Issues (if available) |
| **π‘ Feature Requests** | Hugging Face Discussions |
| **β Usage Questions** | Community Tab on HF Space |
| **π Documentation** | README and inline help |
---
## π License & Citation
### **π License**
This project is licensed under the **MIT License** - see the LICENSE file for details.
### **π Citation**
If you use this tool in your research or education, please cite:
```bibtex
@software{drug_discovery_pipeline_2024,
title={AI-Powered Drug Discovery Pipeline},
author={alidenewade},
year={2024},
url={https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline},
note={Interactive demonstration of AI in pharmaceutical development}
}
```
---
## π Acknowledgments
<div align="center">
**Built with β€οΈ by the open-source community**
</div>
| ποΈ **Organization** | π― **Contribution** |
|---------------------|---------------------|
| **π§ͺ RDKit Community** | Excellent cheminformatics tools and algorithms |
| **ποΈ PDB & NCBI** | Open access to biological and structural data |
| **π₯οΈ Streamlit Team** | Intuitive web application framework |
| **𧬠BioPython** | Comprehensive biological computation tools |
| **π€ Scikit-learn** | Machine learning algorithms and utilities |
| **π¨ py3Dmol** | Beautiful 3D molecular visualization |
| **π¬ Scientific Community** | Advancing computational drug discovery |
---
## π Quick Links
<div align="center">
| π **Action** | π **Link** |
|---------------|-------------|
| **π Live Demo** | [Try Now](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) |
| **π€ Author Profile** | [alidenewade](https://huggingface.co/alidenewade) |
| **π¬ ORCID** | [0009-0007-0069-4646](https://orcid.org/0009-0007-0069-4646) |
| **π ResearchGate** | [Ali Denewade](https://www.researchgate.net/profile/Ali-Denewade) |
| **π¬ Discussions** | [Community](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline/discussions) |
| **π Analytics** | [Space Stats](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) |
---
<sub>β **Star this project if you find it useful!** β</sub>
</div> |