File size: 13,767 Bytes
243dde0
 
 
 
 
 
 
 
 
 
845bf0b
243dde0
f182455
3546c93
f182455
 
 
 
845bf0b
f182455
3546c93
f182455
845bf0b
f182455
845bf0b
f182455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845bf0b
f182455
 
845bf0b
f182455
 
 
 
 
845bf0b
f182455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845bf0b
f182455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845bf0b
f182455
845bf0b
 
 
f182455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845bf0b
f182455
 
 
 
 
845bf0b
f182455
845bf0b
f182455
 
 
845bf0b
f182455
3546c93
f182455
3546c93
f182455
 
 
3546c93
f182455
845bf0b
 
f182455
845bf0b
 
 
f182455
 
 
 
 
845bf0b
 
f182455
845bf0b
 
 
f182455
 
 
 
 
 
 
 
 
 
 
 
845bf0b
f182455
845bf0b
f182455
845bf0b
 
f182455
845bf0b
 
 
f182455
 
 
 
 
 
 
 
 
 
 
 
 
 
845bf0b
f182455
 
 
845bf0b
f182455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845bf0b
 
f182455
 
 
 
 
 
 
 
 
 
 
 
 
 
845bf0b
f182455
845bf0b
f182455
 
 
 
 
845bf0b
f182455
 
 
 
 
 
 
845bf0b
 
 
f182455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845bf0b
f182455
845bf0b
f182455
845bf0b
f182455
 
 
 
 
 
 
 
 
 
 
845bf0b
 
 
f182455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845bf0b
f182455
 
 
 
 
 
845bf0b
f182455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845bf0b
f182455
845bf0b
 
 
f182455
 
 
 
 
845bf0b
f182455
 
 
 
 
 
 
 
 
845bf0b
f182455
 
 
845bf0b
f182455
3546c93
f182455
 
 
 
d337468
 
f182455
 
3546c93
845bf0b
 
f182455
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
---
title: Drug Discovery Pipeline
emoji: 🐠
colorFrom: purple
colorTo: green
sdk: docker
pinned: false
license: mit
short_description: AI-Powered Drug Discovery Pipeline Demo
---
# πŸ”¬ AI-Powered Drug Discovery Pipeline

<div align="center">

[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue?style=for-the-badge)](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg?style=for-the-badge)](https://opensource.org/licenses/MIT)
[![Python](https://img.shields.io/badge/python-3.8+-blue.svg?style=for-the-badge&logo=python&logoColor=white)](https://www.python.org/)
[![Docker](https://img.shields.io/badge/docker-%230db7ed.svg?style=for-the-badge&logo=docker&logoColor=white)](https://www.docker.com/)

**An interactive demonstration of how artificial intelligence and computational tools can accelerate the drug discovery process from target identification to post-market surveillance.**

[πŸš€ **Try Live Demo**](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) β€’ [πŸ“– **Documentation**](#-overview) β€’ [πŸ› οΈ **Installation**](#-installation--usage) β€’ [🀝 **Contribute**](#-contributing)

</div>

---

## 🎯 Overview

This comprehensive application integrates the four major phases of pharmaceutical drug development into a single, interactive web interface. Built with cutting-edge AI and computational biology tools, it demonstrates how modern technology can accelerate and optimize the traditionally lengthy drug discovery process.

### πŸ”„ Pipeline Phases

<table>
<tr>
<td width="25%" align="center">

**🎯 Phase 1**
<br>
**Discovery & Target ID**
<br>
<sub>Protein analysis & compound screening</sub>

</td>
<td width="25%" align="center">

**πŸ§ͺ Phase 2**
<br>
**Lead Generation**
<br>
<sub>Virtual screening & ADMET prediction</sub>

</td>
<td width="25%" align="center">

**πŸ”¬ Phase 3**
<br>
**Preclinical Development**
<br>
<sub>Molecular analysis & toxicity testing</sub>

</td>
<td width="25%" align="center">

**πŸ“‹ Phase 4**
<br>
**Implementation**
<br>
<sub>Regulatory docs & pharmacovigilance</sub>

</td>
</tr>
</table>

---

## ✨ Key Features

### 🎯 **Phase 1: Discovery & Target Identification**
- **🧬 Protein Structure Fetching** - Retrieve 3D structures from PDB database
- **πŸ” FASTA Sequence Analysis** - Fetch and analyze protein sequences from NCBI
- **πŸ“Š Interactive 3D Visualization** - Explore protein structures with py3Dmol
- **βš—οΈ Molecular Property Calculation** - Compute physicochemical properties using RDKit
- **πŸ“ˆ Drug-Likeness Assessment** - Evaluate compounds using Lipinski's Rule of Five
- **πŸ“Š Properties Dashboard** - Visualize molecular properties with interactive plots

### πŸ§ͺ **Phase 2: Lead Generation & Optimization**
- **🎯 Virtual Screening Simulation** - Rank compounds by predicted binding affinity
- **πŸ’Š ADMET Prediction** - Assess Absorption, Distribution, Metabolism, Excretion, and Toxicity
- **πŸ”¬ 2D/3D Molecular Visualization** - Interactive molecule viewers with dark theme
- **πŸ”— Protein-Ligand Interaction** - Visualize binding sites and molecular interactions
- **πŸ“‹ Lead Compound Analysis** - Analyze drugs like Oseltamivir, Zanamivir, Aspirin, and Ibuprofen

### πŸ”¬ **Phase 3: Preclinical Development**
- **πŸ“Š Comprehensive Property Analysis** - Extended molecular descriptor calculations
- **πŸ€– AI-Powered Toxicity Prediction** - Machine learning model for toxicity risk assessment
- **🧬 Advanced Compound Profiling** - Analysis of clinical candidates including Remdesivir and Penicillin G
- **🎨 3D Molecular Gallery** - Interactive visualization of compound libraries

### πŸ“‹ **Phase 4: Implementation & Post-Market**
- **πŸ“„ Regulatory Documentation** - AI/ML model documentation templates for FDA submission
- **⚠️ Pharmacovigilance Simulation** - Real-world data analysis for adverse event detection
- **πŸ›‘οΈ Ethical Framework** - Guidelines for responsible AI in healthcare
- **πŸ“ˆ Adverse Event Analysis** - Statistical analysis and visualization of safety data

---

## πŸ› οΈ Technical Stack

<div align="center">

### **Core Technologies**

| Category | Technologies |
|----------|-------------|
| **πŸ–₯️ Framework** | ![Streamlit](https://img.shields.io/badge/Streamlit-FF4B4B?style=flat-square&logo=streamlit&logoColor=white) |
| **πŸ§ͺ Cheminformatics** | ![RDKit](https://img.shields.io/badge/RDKit-2E8B57?style=flat-square) |
| **🧬 Bioinformatics** | ![BioPython](https://img.shields.io/badge/BioPython-4169E1?style=flat-square) |
| **🎨 Visualization** | ![py3Dmol](https://img.shields.io/badge/py3Dmol-FF6347?style=flat-square) ![Matplotlib](https://img.shields.io/badge/Matplotlib-11557c?style=flat-square) |
| **πŸ€– Machine Learning** | ![Scikit-learn](https://img.shields.io/badge/scikit--learn-F7931E?style=flat-square&logo=scikit-learn&logoColor=white) |

### **Data Sources**

| Source | Description |
|--------|-------------|
| **πŸ›οΈ PDB** | Protein Data Bank - 3D protein structures |
| **🧬 NCBI** | Protein sequences and biological data |
| **πŸ’Š ChEMBL** | Bioactivity database (referenced) |

</div>

---

## πŸš€ Installation & Usage

### 🌐 **Quick Start - Hugging Face Spaces**

The easiest way to explore the pipeline:

```bash
πŸ”— https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline
```

> **No installation required!** Simply click the link above to start exploring.

### πŸ’» **Local Development**

#### **Prerequisites**
- Python 3.8 or higher
- Git

#### **Setup**

```bash
# πŸ“₯ Clone the repository
git clone <repository-url>
cd drug-discovery-pipeline

# πŸ”§ Create virtual environment (recommended)
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# πŸ“¦ Install dependencies
pip install -r requirements.txt

# πŸš€ Launch the application
streamlit run app.py
```

#### **Access the Application**
```
🌐 Local URL: http://localhost:8501
```

### 🐳 **Docker Deployment**

#### **Option 1: Quick Run**
```bash
# πŸƒβ€β™‚οΈ Run directly from Docker Hub (if available)
docker run -p 8501:8501 alidenewade/drug-discovery-pipeline
```

#### **Option 2: Build from Source**
```bash
# πŸ”¨ Build the Docker image
docker build -t drug-discovery-pipeline .

# πŸš€ Run the container
docker run -p 8501:8501 drug-discovery-pipeline
```

#### **Docker Compose (Advanced)**
```yaml
# docker-compose.yml
version: '3.8'
services:
  drug-discovery:
    build: .
    ports:
      - "8501:8501"
    environment:
      - STREAMLIT_SERVER_PORT=8501
    volumes:
      - ./data:/app/data  # Optional: for persistent data
```

```bash
# 🐳 Deploy with Docker Compose
docker-compose up -d
```

---

## πŸ“‹ Dependencies

<details>
<summary><strong>πŸ“¦ Click to view complete requirements.txt</strong></summary>

```txt
# πŸ–₯️ Web Framework
streamlit>=1.28.0

# πŸ“Š Data Processing
pandas>=1.5.0
numpy>=1.24.0

# πŸ“ˆ Visualization
matplotlib>=3.6.0
seaborn>=0.12.0
plotly>=5.15.0

# 🌐 Network & APIs
requests>=2.28.0

# πŸ–ΌοΈ Image Processing
pillow>=9.5.0

# πŸ§ͺ Cheminformatics
rdkit>=2023.3.1

# 🧬 Bioinformatics
biopython>=1.81

# πŸ€– Machine Learning
scikit-learn>=1.3.0

# 🎨 3D Molecular Visualization
py3dmol>=2.0.0

# πŸ”§ Utilities
streamlit-option-menu>=0.3.6
streamlit-aggrid>=0.3.4
```

</details>

---

## 🎯 Use Cases & Applications

<div align="center">

| πŸŽ“ **Educational** | πŸ”¬ **Research** | 🏭 **Industry** |
|-------------------|-----------------|------------------|
| Drug discovery training | Proof of concept demos | Pipeline optimization |
| Cheminformatics education | Method validation | AI strategy planning |
| Bioinformatics learning | Collaborative research | Regulatory compliance |
| AI in healthcare | Publication support | Risk assessment |

</div>

### πŸ“š **Educational Applications**
- **πŸŽ“ University Courses** - Pharmaceutical sciences, computational biology
- **πŸ‘©β€πŸ« Training Programs** - Professional development in drug discovery
- **πŸ“– Self-Learning** - Interactive exploration of drug development concepts
- **🎯 Workshops** - Hands-on demonstrations for conferences and seminars

### πŸ”¬ **Research Applications**
- **πŸ’‘ Hypothesis Generation** - Explore structure-activity relationships
- **πŸ§ͺ Method Development** - Test computational approaches
- **πŸ“Š Data Visualization** - Create publication-ready figures
- **🀝 Collaboration** - Share analyses with research teams

---

## πŸ”¬ Scientific Methodology

### **🧬 Molecular Analysis Framework**

| Method | Description | Implementation |
|--------|-------------|----------------|
| **πŸ“ Lipinski's Rule of Five** | Drug-likeness assessment | RDKit molecular descriptors |
| **πŸ’Š ADMET Profiling** | Pharmacokinetic predictions | Machine learning models |
| **⚠️ Toxicity Modeling** | Safety risk assessment | Ensemble ML algorithms |
| **πŸ”— SAR Analysis** | Structure-activity relationships | Statistical correlation analysis |

### **πŸ“Š Data Integration Pipeline**

```mermaid
graph LR
    A[🧬 Structural Data] --> D[πŸ”„ Integration Engine]
    B[πŸ“Š Chemical Data] --> D
    C[πŸ“ˆ Biological Data] --> D
    D --> E[πŸ€– AI Analysis]
    E --> F[πŸ“‹ Results Dashboard]
```

---

## ⚠️ Important Disclaimers

<div align="center">

> **🚨 FOR EDUCATIONAL AND RESEARCH PURPOSES ONLY**

</div>

| ⚠️ **Limitation** | πŸ“ **Details** |
|-------------------|----------------|
| **πŸŽ“ Educational Tool** | Demonstration purposes only, not for actual drug development |
| **🎲 Simulated Data** | Some analyses use simulated data for illustration |
| **πŸ“‹ Regulatory Compliance** | Consult regulatory agencies for actual submissions |
| **πŸ‘¨β€βš•οΈ Professional Use** | Real development requires validated, regulated systems |
| **πŸ”¬ Research Grade** | Requires validation for production use |

---

## 🀝 Contributing

We welcome contributions from the community! Here's how you can help:

### **πŸ› οΈ Development Guidelines**

```bash
# 🍴 Fork the repository
git fork https://github.com/username/drug-discovery-pipeline

# 🌿 Create a feature branch
git checkout -b feature/amazing-feature

# πŸ’» Make your changes
# ... code changes ...

# βœ… Test your changes
python -m pytest tests/

# πŸ“ Commit your changes
git commit -m "Add amazing feature"

# πŸš€ Push to your branch
git push origin feature/amazing-feature

# πŸ”„ Create a Pull Request
```

### **πŸ“‹ Contribution Areas**

- **πŸ› Bug Fixes** - Fix issues and improve stability
- **✨ New Features** - Add new analysis methods or visualizations
- **πŸ“š Documentation** - Improve README, add tutorials
- **πŸ§ͺ Testing** - Expand test coverage
- **🎨 UI/UX** - Enhance user interface and experience
- **⚑ Performance** - Optimize for speed and memory usage

### **πŸ“ Code Standards**

- **🐍 Python Style** - Follow PEP 8 guidelines
- **πŸ“ Documentation** - Add docstrings and comments
- **πŸ§ͺ Testing** - Include unit tests for new features
- **πŸ”§ Type Hints** - Use type annotations where applicable

---

## πŸ“ž Support & Community

<div align="center">

### **πŸ’¬ Get Help**

[![Hugging Face Discussions](https://img.shields.io/badge/πŸ€—%20Discussions-Join%20Community-yellow?style=for-the-badge)](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline/discussions)

</div>

| πŸ†˜ **Issue Type** | πŸ”— **Where to Go** |
|------------------|-------------------|
| **πŸ› Bug Reports** | GitHub Issues (if available) |
| **πŸ’‘ Feature Requests** | Hugging Face Discussions |
| **❓ Usage Questions** | Community Tab on HF Space |
| **πŸ“š Documentation** | README and inline help |

---

## πŸ“„ License & Citation

### **πŸ“œ License**
This project is licensed under the **MIT License** - see the LICENSE file for details.

### **πŸ“– Citation**
If you use this tool in your research or education, please cite:

```bibtex
@software{drug_discovery_pipeline_2024,
  title={AI-Powered Drug Discovery Pipeline},
  author={alidenewade},
  year={2024},
  url={https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline},
  note={Interactive demonstration of AI in pharmaceutical development}
}
```

---

## πŸ™ Acknowledgments

<div align="center">

**Built with ❀️ by the open-source community**

</div>

| πŸ›οΈ **Organization** | 🎯 **Contribution** |
|---------------------|---------------------|
| **πŸ§ͺ RDKit Community** | Excellent cheminformatics tools and algorithms |
| **πŸ›οΈ PDB & NCBI** | Open access to biological and structural data |
| **πŸ–₯️ Streamlit Team** | Intuitive web application framework |
| **🧬 BioPython** | Comprehensive biological computation tools |
| **πŸ€– Scikit-learn** | Machine learning algorithms and utilities |
| **🎨 py3Dmol** | Beautiful 3D molecular visualization |
| **πŸ”¬ Scientific Community** | Advancing computational drug discovery |

---

## πŸ”— Quick Links

<div align="center">

| πŸš€ **Action** | πŸ”— **Link** |
|---------------|-------------|
| **🌐 Live Demo** | [Try Now](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) |
| **πŸ‘€ Author Profile** | [alidenewade](https://huggingface.co/alidenewade) |
| **πŸ”¬ ORCID** | [0009-0007-0069-4646](https://orcid.org/0009-0007-0069-4646) |
| **πŸ“š ResearchGate** | [Ali Denewade](https://www.researchgate.net/profile/Ali-Denewade) |
| **πŸ’¬ Discussions** | [Community](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline/discussions) |
| **πŸ“Š Analytics** | [Space Stats](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) |

---

<sub>⭐ **Star this project if you find it useful!** ⭐</sub>

</div>