alidenewade commited on
Commit
f182455
Β·
verified Β·
1 Parent(s): 3546c93

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +370 -121
README.md CHANGED
@@ -10,190 +10,439 @@ short_description: AI-Powered Drug Discovery Pipeline Demo
10
  ---
11
  # πŸ”¬ AI-Powered Drug Discovery Pipeline
12
 
13
- [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline)
14
 
15
- An interactive demonstration of how artificial intelligence and computational tools can accelerate the drug discovery process from target identification to post-market surveillance.
 
 
 
16
 
17
- **πŸš€ [Try the Live Demo](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline)**
18
 
19
- ## πŸš€ Overview
20
 
21
- This application integrates the four major phases of drug development into a single, interactive web interface:
22
 
23
- 1. **Discovery & Target Identification** - Protein structure analysis and initial compound screening
24
- 2. **Lead Generation & Optimization** - Virtual screening and ADMET prediction
25
- 3. **Preclinical Development** - Comprehensive molecular analysis and toxicity prediction
26
- 4. **Implementation & Post-Market** - Regulatory documentation and pharmacovigilance
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- ## ✨ Features
 
29
 
30
- ### Phase 1: Discovery & Target Identification
31
- - **Protein Structure Fetching**: Retrieve 3D protein structures from PDB database
32
- - **FASTA Sequence Analysis**: Fetch and analyze protein sequences from NCBI
33
- - **Interactive 3D Visualization**: Explore protein structures with py3Dmol
34
- - **Molecular Property Calculation**: Compute key physicochemical properties using RDKit
35
- - **Drug-Likeness Assessment**: Evaluate compounds using Lipinski's Rule of Five
36
- - **Properties Dashboard**: Visualize molecular properties with interactive plots
37
 
38
- ### Phase 2: Lead Generation & Optimization
39
- - **Virtual Screening Simulation**: Rank compounds by predicted binding affinity
40
- - **ADMET Prediction**: Assess Absorption, Distribution, Metabolism, Excretion, and Toxicity
41
- - **2D/3D Molecular Visualization**: Interactive molecule viewers with dark theme optimization
42
- - **Protein-Ligand Interaction**: Visualize binding sites and molecular interactions
43
- - **Lead Compound Analysis**: Analyze known drugs like Oseltamivir, Zanamivir, Aspirin, and Ibuprofen
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
- ### Phase 3: Preclinical Development
46
- - **Comprehensive Property Analysis**: Extended molecular descriptor calculations
47
- - **AI-Powered Toxicity Prediction**: Machine learning model for toxicity risk assessment
48
- - **Advanced Compound Profiling**: Analysis of clinical candidates including Remdesivir and Penicillin G
49
- - **3D Molecular Gallery**: Interactive visualization of compound libraries
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
- ### Phase 4: Implementation & Post-Market
52
- - **Regulatory Documentation**: AI/ML model documentation templates for FDA submission
53
- - **Pharmacovigilance Simulation**: Real-world data analysis for adverse event detection
54
- - **Ethical Framework**: Guidelines for responsible AI in healthcare
55
- - **Adverse Event Analysis**: Statistical analysis and visualization of safety data
56
 
57
  ## πŸ› οΈ Technical Stack
58
 
59
- ### Core Libraries
60
- - **Streamlit**: Interactive web application framework
61
- - **RDKit**: Cheminformatics and molecular property calculations
62
- - **BioPython**: Biological sequence analysis
63
- - **py3Dmol**: 3D molecular visualization
64
- - **Scikit-learn**: Machine learning models for toxicity prediction
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
66
- ### Data Sources
67
- - **PDB (Protein Data Bank)**: 3D protein structures
68
- - **NCBI**: Protein sequences and biological data
69
- - **ChEMBL**: Bioactivity database (referenced in documentation)
 
70
 
71
- ### Visualization
72
- - **Matplotlib/Seaborn**: Statistical plots and dashboards
73
- - **Interactive 3D**: Protein and molecular structure viewers
74
- - **Dark Theme**: Optimized for professional presentation
75
 
76
- ## πŸ”§ Installation & Usage
 
 
77
 
78
- ### Running on Hugging Face Spaces
79
 
80
- The application is deployed and ready to use at:
81
- **https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline**
82
 
83
- Simply click the link above to start exploring the drug discovery pipeline!
 
 
84
 
85
- ### Running Locally
86
 
87
  ```bash
88
- # Clone the repository
89
  git clone <repository-url>
90
  cd drug-discovery-pipeline
91
 
92
- # Install dependencies
 
 
 
 
93
  pip install -r requirements.txt
94
 
95
- # Run the application
96
  streamlit run app.py
97
  ```
98
 
99
- ### Docker Deployment
 
 
 
 
 
 
 
 
 
 
 
100
 
 
101
  ```bash
102
- # Build the Docker image
103
  docker build -t drug-discovery-pipeline .
104
 
105
- # Run the container
106
  docker run -p 8501:8501 drug-discovery-pipeline
107
  ```
108
 
109
- ## πŸ“‹ Requirements
 
 
 
 
 
 
 
 
 
 
 
 
 
110
 
 
 
 
111
  ```
112
- streamlit
113
- pandas
114
- numpy
115
- matplotlib
116
- seaborn
117
- requests
118
- pillow
119
- rdkit
120
- biopython
121
- scikit-learn
122
- py3Dmol
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
  ```
124
 
125
- ## 🎯 Use Cases
 
 
 
 
 
 
 
 
 
 
 
 
 
126
 
127
- ### Educational
128
- - **Drug Discovery Training**: Learn the complete drug development pipeline
129
- - **Cheminformatics Education**: Understand molecular property calculations
130
- - **Bioinformatics Learning**: Explore protein structure analysis
131
- - **AI in Healthcare**: Discover machine learning applications in drug development
132
 
133
- ### Research & Development
134
- - **Proof of Concept**: Demonstrate AI-powered drug discovery workflows
135
- - **Method Validation**: Test computational approaches before full implementation
136
- - **Collaborative Research**: Share analyses with research teams
137
- - **Regulatory Preparation**: Understand documentation requirements
138
 
139
- ### Industry Applications
140
- - **Pipeline Optimization**: Identify bottlenecks in drug development
141
- - **AI Strategy**: Plan machine learning implementations
142
- - **Regulatory Compliance**: Prepare for AI/ML submissions
143
- - **Risk Assessment**: Evaluate compound safety profiles
 
 
144
 
145
  ## πŸ”¬ Scientific Methodology
146
 
147
- ### Molecular Analysis
148
- - **Lipinski's Rule of Five**: Drug-likeness assessment
149
- - **ADMET Profiling**: Pharmacokinetic property prediction
150
- - **Toxicity Modeling**: Machine learning-based safety prediction
151
- - **Structure-Activity Relationships**: Correlate molecular features with biological activity
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
 
153
- ### Data Integration
154
- - **Multi-source Data**: Combine structural, sequence, and chemical data
155
- - **Real-world Evidence**: Incorporate post-market surveillance data
156
- - **Regulatory Standards**: Align with FDA guidance on AI/ML in drug development
157
 
158
- ## 🚨 Limitations & Disclaimers
159
 
160
- - **Educational Purpose**: This is a demonstration tool, not for actual drug development
161
- - **Simulated Data**: Some analyses use simulated data for demonstration purposes
162
- - **Regulatory Compliance**: Consult regulatory agencies for actual submission requirements
163
- - **Professional Use**: Real drug development requires validated, regulated systems
 
 
 
 
 
 
 
164
 
165
  ## 🀝 Contributing
166
 
167
- Contributions are welcome! Please consider:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168
 
169
- - **Code Quality**: Follow PEP 8 standards
170
- - **Documentation**: Update README for new features
171
- - **Testing**: Ensure functionality across different inputs
172
- - **Performance**: Optimize for large datasets
 
 
173
 
174
- ## πŸ“„ License
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175
 
176
- This project is licensed under the MIT License - see the LICENSE file for details.
177
 
178
  ## πŸ™ Acknowledgments
179
 
180
- - **RDKit Community**: For excellent cheminformatics tools
181
- - **PDB & NCBI**: For providing open access to biological data
182
- - **Streamlit Team**: For the intuitive web framework
183
- - **Scientific Community**: For advancing computational drug discovery
 
184
 
185
- ## πŸ“ž Support
 
 
 
 
 
 
 
 
186
 
187
- For questions, issues, or suggestions:
188
- - Visit the [Hugging Face Space](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline)
189
- - Open a discussion on the Space's Community tab
190
- - Check the documentation for troubleshooting
191
 
192
- ## πŸ”— Links
193
 
194
- - **Live Demo**: https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline
195
- - **Hugging Face Profile**: https://huggingface.co/alidenewade
 
 
 
 
196
 
197
  ---
198
 
199
- **Disclaimer**: This application is for educational and research purposes only. It should not be used for actual drug development without proper validation and regulatory oversight.
 
 
 
10
  ---
11
  # πŸ”¬ AI-Powered Drug Discovery Pipeline
12
 
13
+ <div align="center">
14
 
15
+ [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue?style=for-the-badge)](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline)
16
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg?style=for-the-badge)](https://opensource.org/licenses/MIT)
17
+ [![Python](https://img.shields.io/badge/python-3.8+-blue.svg?style=for-the-badge&logo=python&logoColor=white)](https://www.python.org/)
18
+ [![Docker](https://img.shields.io/badge/docker-%230db7ed.svg?style=for-the-badge&logo=docker&logoColor=white)](https://www.docker.com/)
19
 
20
+ **An interactive demonstration of how artificial intelligence and computational tools can accelerate the drug discovery process from target identification to post-market surveillance.**
21
 
22
+ [πŸš€ **Try Live Demo**](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) β€’ [πŸ“– **Documentation**](#-overview) β€’ [πŸ› οΈ **Installation**](#-installation--usage) β€’ [🀝 **Contribute**](#-contributing)
23
 
24
+ </div>
25
 
26
+ ---
27
+
28
+ ## 🎯 Overview
29
+
30
+ This comprehensive application integrates the four major phases of pharmaceutical drug development into a single, interactive web interface. Built with cutting-edge AI and computational biology tools, it demonstrates how modern technology can accelerate and optimize the traditionally lengthy drug discovery process.
31
+
32
+ ### πŸ”„ Pipeline Phases
33
+
34
+ <table>
35
+ <tr>
36
+ <td width="25%" align="center">
37
+
38
+ **🎯 Phase 1**
39
+ <br>
40
+ **Discovery & Target ID**
41
+ <br>
42
+ <sub>Protein analysis & compound screening</sub>
43
 
44
+ </td>
45
+ <td width="25%" align="center">
46
 
47
+ **πŸ§ͺ Phase 2**
48
+ <br>
49
+ **Lead Generation**
50
+ <br>
51
+ <sub>Virtual screening & ADMET prediction</sub>
 
 
52
 
53
+ </td>
54
+ <td width="25%" align="center">
55
+
56
+ **πŸ”¬ Phase 3**
57
+ <br>
58
+ **Preclinical Development**
59
+ <br>
60
+ <sub>Molecular analysis & toxicity testing</sub>
61
+
62
+ </td>
63
+ <td width="25%" align="center">
64
+
65
+ **πŸ“‹ Phase 4**
66
+ <br>
67
+ **Implementation**
68
+ <br>
69
+ <sub>Regulatory docs & pharmacovigilance</sub>
70
+
71
+ </td>
72
+ </tr>
73
+ </table>
74
+
75
+ ---
76
 
77
+ ## ✨ Key Features
78
+
79
+ ### 🎯 **Phase 1: Discovery & Target Identification**
80
+ - **🧬 Protein Structure Fetching** - Retrieve 3D structures from PDB database
81
+ - **πŸ” FASTA Sequence Analysis** - Fetch and analyze protein sequences from NCBI
82
+ - **πŸ“Š Interactive 3D Visualization** - Explore protein structures with py3Dmol
83
+ - **βš—οΈ Molecular Property Calculation** - Compute physicochemical properties using RDKit
84
+ - **πŸ“ˆ Drug-Likeness Assessment** - Evaluate compounds using Lipinski's Rule of Five
85
+ - **πŸ“Š Properties Dashboard** - Visualize molecular properties with interactive plots
86
+
87
+ ### πŸ§ͺ **Phase 2: Lead Generation & Optimization**
88
+ - **🎯 Virtual Screening Simulation** - Rank compounds by predicted binding affinity
89
+ - **πŸ’Š ADMET Prediction** - Assess Absorption, Distribution, Metabolism, Excretion, and Toxicity
90
+ - **πŸ”¬ 2D/3D Molecular Visualization** - Interactive molecule viewers with dark theme
91
+ - **πŸ”— Protein-Ligand Interaction** - Visualize binding sites and molecular interactions
92
+ - **πŸ“‹ Lead Compound Analysis** - Analyze drugs like Oseltamivir, Zanamivir, Aspirin, and Ibuprofen
93
+
94
+ ### πŸ”¬ **Phase 3: Preclinical Development**
95
+ - **πŸ“Š Comprehensive Property Analysis** - Extended molecular descriptor calculations
96
+ - **πŸ€– AI-Powered Toxicity Prediction** - Machine learning model for toxicity risk assessment
97
+ - **🧬 Advanced Compound Profiling** - Analysis of clinical candidates including Remdesivir and Penicillin G
98
+ - **🎨 3D Molecular Gallery** - Interactive visualization of compound libraries
99
+
100
+ ### πŸ“‹ **Phase 4: Implementation & Post-Market**
101
+ - **πŸ“„ Regulatory Documentation** - AI/ML model documentation templates for FDA submission
102
+ - **⚠️ Pharmacovigilance Simulation** - Real-world data analysis for adverse event detection
103
+ - **πŸ›‘οΈ Ethical Framework** - Guidelines for responsible AI in healthcare
104
+ - **πŸ“ˆ Adverse Event Analysis** - Statistical analysis and visualization of safety data
105
 
106
+ ---
 
 
 
 
107
 
108
  ## πŸ› οΈ Technical Stack
109
 
110
+ <div align="center">
111
+
112
+ ### **Core Technologies**
113
+
114
+ | Category | Technologies |
115
+ |----------|-------------|
116
+ | **πŸ–₯️ Framework** | ![Streamlit](https://img.shields.io/badge/Streamlit-FF4B4B?style=flat-square&logo=streamlit&logoColor=white) |
117
+ | **πŸ§ͺ Cheminformatics** | ![RDKit](https://img.shields.io/badge/RDKit-2E8B57?style=flat-square) |
118
+ | **🧬 Bioinformatics** | ![BioPython](https://img.shields.io/badge/BioPython-4169E1?style=flat-square) |
119
+ | **🎨 Visualization** | ![py3Dmol](https://img.shields.io/badge/py3Dmol-FF6347?style=flat-square) ![Matplotlib](https://img.shields.io/badge/Matplotlib-11557c?style=flat-square) |
120
+ | **πŸ€– Machine Learning** | ![Scikit-learn](https://img.shields.io/badge/scikit--learn-F7931E?style=flat-square&logo=scikit-learn&logoColor=white) |
121
+
122
+ ### **Data Sources**
123
+
124
+ | Source | Description |
125
+ |--------|-------------|
126
+ | **πŸ›οΈ PDB** | Protein Data Bank - 3D protein structures |
127
+ | **🧬 NCBI** | Protein sequences and biological data |
128
+ | **πŸ’Š ChEMBL** | Bioactivity database (referenced) |
129
+
130
+ </div>
131
 
132
+ ---
133
+
134
+ ## πŸš€ Installation & Usage
135
+
136
+ ### 🌐 **Quick Start - Hugging Face Spaces**
137
 
138
+ The easiest way to explore the pipeline:
 
 
 
139
 
140
+ ```bash
141
+ πŸ”— https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline
142
+ ```
143
 
144
+ > **No installation required!** Simply click the link above to start exploring.
145
 
146
+ ### πŸ’» **Local Development**
 
147
 
148
+ #### **Prerequisites**
149
+ - Python 3.8 or higher
150
+ - Git
151
 
152
+ #### **Setup**
153
 
154
  ```bash
155
+ # πŸ“₯ Clone the repository
156
  git clone <repository-url>
157
  cd drug-discovery-pipeline
158
 
159
+ # πŸ”§ Create virtual environment (recommended)
160
+ python -m venv venv
161
+ source venv/bin/activate # On Windows: venv\Scripts\activate
162
+
163
+ # πŸ“¦ Install dependencies
164
  pip install -r requirements.txt
165
 
166
+ # πŸš€ Launch the application
167
  streamlit run app.py
168
  ```
169
 
170
+ #### **Access the Application**
171
+ ```
172
+ 🌐 Local URL: http://localhost:8501
173
+ ```
174
+
175
+ ### 🐳 **Docker Deployment**
176
+
177
+ #### **Option 1: Quick Run**
178
+ ```bash
179
+ # πŸƒβ€β™‚οΈ Run directly from Docker Hub (if available)
180
+ docker run -p 8501:8501 alidenewade/drug-discovery-pipeline
181
+ ```
182
 
183
+ #### **Option 2: Build from Source**
184
  ```bash
185
+ # πŸ”¨ Build the Docker image
186
  docker build -t drug-discovery-pipeline .
187
 
188
+ # πŸš€ Run the container
189
  docker run -p 8501:8501 drug-discovery-pipeline
190
  ```
191
 
192
+ #### **Docker Compose (Advanced)**
193
+ ```yaml
194
+ # docker-compose.yml
195
+ version: '3.8'
196
+ services:
197
+ drug-discovery:
198
+ build: .
199
+ ports:
200
+ - "8501:8501"
201
+ environment:
202
+ - STREAMLIT_SERVER_PORT=8501
203
+ volumes:
204
+ - ./data:/app/data # Optional: for persistent data
205
+ ```
206
 
207
+ ```bash
208
+ # 🐳 Deploy with Docker Compose
209
+ docker-compose up -d
210
  ```
211
+
212
+ ---
213
+
214
+ ## πŸ“‹ Dependencies
215
+
216
+ <details>
217
+ <summary><strong>πŸ“¦ Click to view complete requirements.txt</strong></summary>
218
+
219
+ ```txt
220
+ # πŸ–₯️ Web Framework
221
+ streamlit>=1.28.0
222
+
223
+ # πŸ“Š Data Processing
224
+ pandas>=1.5.0
225
+ numpy>=1.24.0
226
+
227
+ # πŸ“ˆ Visualization
228
+ matplotlib>=3.6.0
229
+ seaborn>=0.12.0
230
+ plotly>=5.15.0
231
+
232
+ # 🌐 Network & APIs
233
+ requests>=2.28.0
234
+
235
+ # πŸ–ΌοΈ Image Processing
236
+ pillow>=9.5.0
237
+
238
+ # πŸ§ͺ Cheminformatics
239
+ rdkit>=2023.3.1
240
+
241
+ # 🧬 Bioinformatics
242
+ biopython>=1.81
243
+
244
+ # πŸ€– Machine Learning
245
+ scikit-learn>=1.3.0
246
+
247
+ # 🎨 3D Molecular Visualization
248
+ py3dmol>=2.0.0
249
+
250
+ # πŸ”§ Utilities
251
+ streamlit-option-menu>=0.3.6
252
+ streamlit-aggrid>=0.3.4
253
  ```
254
 
255
+ </details>
256
+
257
+ ---
258
+
259
+ ## 🎯 Use Cases & Applications
260
+
261
+ <div align="center">
262
+
263
+ | πŸŽ“ **Educational** | πŸ”¬ **Research** | 🏭 **Industry** |
264
+ |-------------------|-----------------|------------------|
265
+ | Drug discovery training | Proof of concept demos | Pipeline optimization |
266
+ | Cheminformatics education | Method validation | AI strategy planning |
267
+ | Bioinformatics learning | Collaborative research | Regulatory compliance |
268
+ | AI in healthcare | Publication support | Risk assessment |
269
 
270
+ </div>
 
 
 
 
271
 
272
+ ### πŸ“š **Educational Applications**
273
+ - **πŸŽ“ University Courses** - Pharmaceutical sciences, computational biology
274
+ - **πŸ‘©β€πŸ« Training Programs** - Professional development in drug discovery
275
+ - **πŸ“– Self-Learning** - Interactive exploration of drug development concepts
276
+ - **🎯 Workshops** - Hands-on demonstrations for conferences and seminars
277
 
278
+ ### πŸ”¬ **Research Applications**
279
+ - **πŸ’‘ Hypothesis Generation** - Explore structure-activity relationships
280
+ - **πŸ§ͺ Method Development** - Test computational approaches
281
+ - **πŸ“Š Data Visualization** - Create publication-ready figures
282
+ - **🀝 Collaboration** - Share analyses with research teams
283
+
284
+ ---
285
 
286
  ## πŸ”¬ Scientific Methodology
287
 
288
+ ### **🧬 Molecular Analysis Framework**
289
+
290
+ | Method | Description | Implementation |
291
+ |--------|-------------|----------------|
292
+ | **πŸ“ Lipinski's Rule of Five** | Drug-likeness assessment | RDKit molecular descriptors |
293
+ | **πŸ’Š ADMET Profiling** | Pharmacokinetic predictions | Machine learning models |
294
+ | **⚠️ Toxicity Modeling** | Safety risk assessment | Ensemble ML algorithms |
295
+ | **πŸ”— SAR Analysis** | Structure-activity relationships | Statistical correlation analysis |
296
+
297
+ ### **πŸ“Š Data Integration Pipeline**
298
+
299
+ ```mermaid
300
+ graph LR
301
+ A[🧬 Structural Data] --> D[πŸ”„ Integration Engine]
302
+ B[πŸ“Š Chemical Data] --> D
303
+ C[πŸ“ˆ Biological Data] --> D
304
+ D --> E[πŸ€– AI Analysis]
305
+ E --> F[πŸ“‹ Results Dashboard]
306
+ ```
307
+
308
+ ---
309
+
310
+ ## ⚠️ Important Disclaimers
311
 
312
+ <div align="center">
 
 
 
313
 
314
+ > **🚨 FOR EDUCATIONAL AND RESEARCH PURPOSES ONLY**
315
 
316
+ </div>
317
+
318
+ | ⚠️ **Limitation** | πŸ“ **Details** |
319
+ |-------------------|----------------|
320
+ | **πŸŽ“ Educational Tool** | Demonstration purposes only, not for actual drug development |
321
+ | **🎲 Simulated Data** | Some analyses use simulated data for illustration |
322
+ | **πŸ“‹ Regulatory Compliance** | Consult regulatory agencies for actual submissions |
323
+ | **πŸ‘¨β€βš•οΈ Professional Use** | Real development requires validated, regulated systems |
324
+ | **πŸ”¬ Research Grade** | Requires validation for production use |
325
+
326
+ ---
327
 
328
  ## 🀝 Contributing
329
 
330
+ We welcome contributions from the community! Here's how you can help:
331
+
332
+ ### **πŸ› οΈ Development Guidelines**
333
+
334
+ ```bash
335
+ # 🍴 Fork the repository
336
+ git fork https://github.com/username/drug-discovery-pipeline
337
+
338
+ # 🌿 Create a feature branch
339
+ git checkout -b feature/amazing-feature
340
+
341
+ # πŸ’» Make your changes
342
+ # ... code changes ...
343
+
344
+ # βœ… Test your changes
345
+ python -m pytest tests/
346
+
347
+ # πŸ“ Commit your changes
348
+ git commit -m "Add amazing feature"
349
+
350
+ # πŸš€ Push to your branch
351
+ git push origin feature/amazing-feature
352
+
353
+ # πŸ”„ Create a Pull Request
354
+ ```
355
+
356
+ ### **πŸ“‹ Contribution Areas**
357
+
358
+ - **πŸ› Bug Fixes** - Fix issues and improve stability
359
+ - **✨ New Features** - Add new analysis methods or visualizations
360
+ - **πŸ“š Documentation** - Improve README, add tutorials
361
+ - **πŸ§ͺ Testing** - Expand test coverage
362
+ - **🎨 UI/UX** - Enhance user interface and experience
363
+ - **⚑ Performance** - Optimize for speed and memory usage
364
+
365
+ ### **πŸ“ Code Standards**
366
+
367
+ - **🐍 Python Style** - Follow PEP 8 guidelines
368
+ - **πŸ“ Documentation** - Add docstrings and comments
369
+ - **πŸ§ͺ Testing** - Include unit tests for new features
370
+ - **πŸ”§ Type Hints** - Use type annotations where applicable
371
+
372
+ ---
373
+
374
+ ## πŸ“ž Support & Community
375
+
376
+ <div align="center">
377
+
378
+ ### **πŸ’¬ Get Help**
379
+
380
+ [![Hugging Face Discussions](https://img.shields.io/badge/πŸ€—%20Discussions-Join%20Community-yellow?style=for-the-badge)](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline/discussions)
381
+
382
+ </div>
383
 
384
+ | πŸ†˜ **Issue Type** | πŸ”— **Where to Go** |
385
+ |------------------|-------------------|
386
+ | **πŸ› Bug Reports** | GitHub Issues (if available) |
387
+ | **πŸ’‘ Feature Requests** | Hugging Face Discussions |
388
+ | **❓ Usage Questions** | Community Tab on HF Space |
389
+ | **πŸ“š Documentation** | README and inline help |
390
 
391
+ ---
392
+
393
+ ## πŸ“„ License & Citation
394
+
395
+ ### **πŸ“œ License**
396
+ This project is licensed under the **MIT License** - see the LICENSE file for details.
397
+
398
+ ### **πŸ“– Citation**
399
+ If you use this tool in your research or education, please cite:
400
+
401
+ ```bibtex
402
+ @software{drug_discovery_pipeline_2024,
403
+ title={AI-Powered Drug Discovery Pipeline},
404
+ author={alidenewade},
405
+ year={2024},
406
+ url={https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline},
407
+ note={Interactive demonstration of AI in pharmaceutical development}
408
+ }
409
+ ```
410
 
411
+ ---
412
 
413
  ## πŸ™ Acknowledgments
414
 
415
+ <div align="center">
416
+
417
+ **Built with ❀️ by the open-source community**
418
+
419
+ </div>
420
 
421
+ | πŸ›οΈ **Organization** | 🎯 **Contribution** |
422
+ |---------------------|---------------------|
423
+ | **πŸ§ͺ RDKit Community** | Excellent cheminformatics tools and algorithms |
424
+ | **πŸ›οΈ PDB & NCBI** | Open access to biological and structural data |
425
+ | **πŸ–₯️ Streamlit Team** | Intuitive web application framework |
426
+ | **🧬 BioPython** | Comprehensive biological computation tools |
427
+ | **πŸ€– Scikit-learn** | Machine learning algorithms and utilities |
428
+ | **🎨 py3Dmol** | Beautiful 3D molecular visualization |
429
+ | **πŸ”¬ Scientific Community** | Advancing computational drug discovery |
430
 
431
+ ---
432
+
433
+ ## πŸ”— Quick Links
 
434
 
435
+ <div align="center">
436
 
437
+ | πŸš€ **Action** | πŸ”— **Link** |
438
+ |---------------|-------------|
439
+ | **🌐 Live Demo** | [Try Now](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) |
440
+ | **πŸ‘€ Author Profile** | [alidenewade](https://huggingface.co/alidenewade) |
441
+ | **πŸ’¬ Discussions** | [Community](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline/discussions) |
442
+ | **πŸ“Š Analytics** | [Space Stats](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) |
443
 
444
  ---
445
 
446
+ <sub>⭐ **Star this project if you find it useful!** ⭐</sub>
447
+
448
+ </div>