Spaces:
Running
Running
| import torch | |
| import torch.nn as nn | |
| def get_rotary_position_encoding(input: torch.Tensor, base=10000, device="cpu"): | |
| batch_size, context_length, dimension = input.shape | |
| assert dimension % 2 == 0, "dimension must be even" | |
| half_dimension = dimension // 2 | |
| freqs_indices = torch.arange(0, half_dimension, device=device, dtype=torch.float32) | |
| freqs = 1.0 / (base ** (freqs_indices / dimension)) | |
| positions = torch.arange(0, context_length, device=device, dtype=torch.float32).unsqueeze(1) | |
| angles = positions * freqs | |
| sin_angles = torch.sin(angles) | |
| cos_angles = torch.cos(angles) | |
| input_even = input[:, :, :dimension // 2] # [0, 2, 4, ..] | |
| input_odd = input[:, :, dimension // 2:] # [1, 3, 5, ..] | |
| input_even_rotated = input_even * cos_angles - input_odd * sin_angles | |
| input_odd_rotated = input_even * sin_angles + input_odd * cos_angles | |
| input_rotated = torch.empty_like(input, device=device) | |
| input_rotated[:, :, :dimension // 2] = input_even_rotated | |
| input_rotated[:, :, dimension // 2:] = input_odd_rotated | |
| return input_rotated | |
| class UstaEmbedding(nn.Module): | |
| def __init__(self, vocab_size, embedding_dim, context_length, device): | |
| super().__init__() | |
| # position embedding but not being used in the forward pass | |
| # it is just for educational purposes | |
| # self.pos_embedding = nn.Embedding(context_length, embedding_dim) | |
| # self.get_pos = get_rotary_position_encoding | |
| self.embedding = nn.Embedding(vocab_size, embedding_dim, device=device) | |
| self.get_pos = get_rotary_position_encoding | |
| self.device = device | |
| def forward(self, x): | |
| x = self.embedding(x) | |
| x = self.get_pos(x, device=self.device) | |
| return x |