Spaces:
Running
Running
v2 implemented
Browse files- .DS_Store +0 -0
- app.py +29 -14
- module_3_3.ipynb +366 -0
- v1/u_model.pth +0 -0
- {v1 β v2}/__init__.py +0 -0
- {v1 β v2}/tokenizer.json +0 -0
- v2/u_model_4000.pth +0 -0
- {v1 β v2}/usta_causal_attention.py +0 -0
- {v1 β v2}/usta_decoder_block.py +12 -6
- {v1 β v2}/usta_embedding.py +10 -9
- {v1 β v2}/usta_layer_norm.py +3 -4
- {v1 β v2}/usta_mlp.py +5 -5
- {v1 β v2}/usta_model.py +45 -8
- {v1 β v2}/usta_multi_head_attention.py +4 -4
- {v1 β v2}/usta_multi_head_attention_old.py +1 -2
- {v1 β v2}/usta_self_attention.py +0 -0
- {v1 β v2}/usta_tokenizer.py +16 -1
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
app.py
CHANGED
|
@@ -3,14 +3,14 @@ import os
|
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
| 5 |
|
| 6 |
-
from
|
| 7 |
-
from
|
| 8 |
|
| 9 |
|
| 10 |
# Load the model and tokenizer
|
| 11 |
def load_model(custom_model_path=None):
|
| 12 |
try:
|
| 13 |
-
u_tokenizer = UstaTokenizer("
|
| 14 |
print("β
Tokenizer loaded successfully! vocab size:", len(u_tokenizer.vocab))
|
| 15 |
|
| 16 |
# Model parameters - adjust these to match your trained model
|
|
@@ -19,6 +19,7 @@ def load_model(custom_model_path=None):
|
|
| 19 |
embedding_dim = 12
|
| 20 |
num_heads = 4
|
| 21 |
num_layers = 8
|
|
|
|
| 22 |
|
| 23 |
# Load the model
|
| 24 |
u_model = UstaModel(
|
|
@@ -26,7 +27,8 @@ def load_model(custom_model_path=None):
|
|
| 26 |
embedding_dim=embedding_dim,
|
| 27 |
num_heads=num_heads,
|
| 28 |
context_length=context_length,
|
| 29 |
-
num_layers=num_layers
|
|
|
|
| 30 |
)
|
| 31 |
|
| 32 |
# Determine which model file to use
|
|
@@ -34,7 +36,7 @@ def load_model(custom_model_path=None):
|
|
| 34 |
model_path = custom_model_path
|
| 35 |
print(f"π― Using uploaded model: {model_path}")
|
| 36 |
else:
|
| 37 |
-
model_path = "
|
| 38 |
|
| 39 |
if not os.path.exists(model_path):
|
| 40 |
print("β Model file not found at", model_path)
|
|
@@ -58,8 +60,8 @@ def load_model(custom_model_path=None):
|
|
| 58 |
|
| 59 |
print(f"π¦ Downloaded {len(response.content)} bytes")
|
| 60 |
|
| 61 |
-
# Create
|
| 62 |
-
os.makedirs("
|
| 63 |
|
| 64 |
# Save the model weights to the local file system
|
| 65 |
with open(model_path, "wb") as f:
|
|
@@ -195,7 +197,7 @@ def load_model_from_file(uploaded_file):
|
|
| 195 |
model_status = error_msg
|
| 196 |
return error_msg
|
| 197 |
|
| 198 |
-
def chat_with_usta(message, history, max_tokens=20):
|
| 199 |
"""Simple chat function"""
|
| 200 |
if model is None or tokenizer is None:
|
| 201 |
return history + [["Error", "UstaModel is not available. Please try again later."]]
|
|
@@ -211,7 +213,13 @@ def chat_with_usta(message, history, max_tokens=20):
|
|
| 211 |
# Generate response
|
| 212 |
with torch.no_grad():
|
| 213 |
actual_max_tokens = min(max_tokens, 32 - len(tokens))
|
| 214 |
-
generated_tokens = model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
# Decode the generated tokens
|
| 217 |
response = tokenizer.decode(generated_tokens)
|
|
@@ -249,7 +257,14 @@ with gr.Blocks(title="π€ Usta Model Chat") as demo:
|
|
| 249 |
clear_btn = gr.Button("Clear")
|
| 250 |
|
| 251 |
# Generation settings
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
|
| 254 |
# Model loading (simplified)
|
| 255 |
gr.Markdown("## π§ Load Custom Model (Optional)")
|
|
@@ -268,20 +283,20 @@ with gr.Blocks(title="π€ Usta Model Chat") as demo:
|
|
| 268 |
status = gr.Textbox(label="Status", value=model_status, interactive=False)
|
| 269 |
|
| 270 |
# Event handlers
|
| 271 |
-
def send_message(message, history, max_tok):
|
| 272 |
if not message.strip():
|
| 273 |
return history, ""
|
| 274 |
-
return chat_with_usta(message, history, max_tok), ""
|
| 275 |
|
| 276 |
send_btn.click(
|
| 277 |
send_message,
|
| 278 |
-
inputs=[msg, chatbot, max_tokens],
|
| 279 |
outputs=[chatbot, msg]
|
| 280 |
)
|
| 281 |
|
| 282 |
msg.submit(
|
| 283 |
send_message,
|
| 284 |
-
inputs=[msg, chatbot, max_tokens],
|
| 285 |
outputs=[chatbot, msg]
|
| 286 |
)
|
| 287 |
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
| 5 |
|
| 6 |
+
from v2.usta_model import UstaModel
|
| 7 |
+
from v2.usta_tokenizer import UstaTokenizer
|
| 8 |
|
| 9 |
|
| 10 |
# Load the model and tokenizer
|
| 11 |
def load_model(custom_model_path=None):
|
| 12 |
try:
|
| 13 |
+
u_tokenizer = UstaTokenizer("v2/tokenizer.json")
|
| 14 |
print("β
Tokenizer loaded successfully! vocab size:", len(u_tokenizer.vocab))
|
| 15 |
|
| 16 |
# Model parameters - adjust these to match your trained model
|
|
|
|
| 19 |
embedding_dim = 12
|
| 20 |
num_heads = 4
|
| 21 |
num_layers = 8
|
| 22 |
+
device = "cpu" # Use CPU for compatibility
|
| 23 |
|
| 24 |
# Load the model
|
| 25 |
u_model = UstaModel(
|
|
|
|
| 27 |
embedding_dim=embedding_dim,
|
| 28 |
num_heads=num_heads,
|
| 29 |
context_length=context_length,
|
| 30 |
+
num_layers=num_layers,
|
| 31 |
+
device=device
|
| 32 |
)
|
| 33 |
|
| 34 |
# Determine which model file to use
|
|
|
|
| 36 |
model_path = custom_model_path
|
| 37 |
print(f"π― Using uploaded model: {model_path}")
|
| 38 |
else:
|
| 39 |
+
model_path = "v2/u_model_4000.pth"
|
| 40 |
|
| 41 |
if not os.path.exists(model_path):
|
| 42 |
print("β Model file not found at", model_path)
|
|
|
|
| 60 |
|
| 61 |
print(f"π¦ Downloaded {len(response.content)} bytes")
|
| 62 |
|
| 63 |
+
# Create v2 directory if it doesn't exist
|
| 64 |
+
os.makedirs("v2", exist_ok=True)
|
| 65 |
|
| 66 |
# Save the model weights to the local file system
|
| 67 |
with open(model_path, "wb") as f:
|
|
|
|
| 197 |
model_status = error_msg
|
| 198 |
return error_msg
|
| 199 |
|
| 200 |
+
def chat_with_usta(message, history, max_tokens=20, temperature=1.0, top_k=64, top_p=1.0):
|
| 201 |
"""Simple chat function"""
|
| 202 |
if model is None or tokenizer is None:
|
| 203 |
return history + [["Error", "UstaModel is not available. Please try again later."]]
|
|
|
|
| 213 |
# Generate response
|
| 214 |
with torch.no_grad():
|
| 215 |
actual_max_tokens = min(max_tokens, 32 - len(tokens))
|
| 216 |
+
generated_tokens = model.generate(
|
| 217 |
+
tokens,
|
| 218 |
+
max_new_tokens=actual_max_tokens,
|
| 219 |
+
temperature=temperature,
|
| 220 |
+
top_k=top_k,
|
| 221 |
+
top_p=top_p
|
| 222 |
+
)
|
| 223 |
|
| 224 |
# Decode the generated tokens
|
| 225 |
response = tokenizer.decode(generated_tokens)
|
|
|
|
| 257 |
clear_btn = gr.Button("Clear")
|
| 258 |
|
| 259 |
# Generation settings
|
| 260 |
+
gr.Markdown("## βοΈ Generation Settings")
|
| 261 |
+
with gr.Row():
|
| 262 |
+
max_tokens = gr.Slider(minimum=1, maximum=30, value=20, step=1, label="Max tokens")
|
| 263 |
+
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Temperature")
|
| 264 |
+
|
| 265 |
+
with gr.Row():
|
| 266 |
+
top_k = gr.Slider(minimum=1, maximum=64, value=40, step=1, label="Top-k")
|
| 267 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=1.0, step=0.05, label="Top-p (nucleus sampling)")
|
| 268 |
|
| 269 |
# Model loading (simplified)
|
| 270 |
gr.Markdown("## π§ Load Custom Model (Optional)")
|
|
|
|
| 283 |
status = gr.Textbox(label="Status", value=model_status, interactive=False)
|
| 284 |
|
| 285 |
# Event handlers
|
| 286 |
+
def send_message(message, history, max_tok, temp, k, p):
|
| 287 |
if not message.strip():
|
| 288 |
return history, ""
|
| 289 |
+
return chat_with_usta(message, history, max_tok, temp, k, p), ""
|
| 290 |
|
| 291 |
send_btn.click(
|
| 292 |
send_message,
|
| 293 |
+
inputs=[msg, chatbot, max_tokens, temperature, top_k, top_p],
|
| 294 |
outputs=[chatbot, msg]
|
| 295 |
)
|
| 296 |
|
| 297 |
msg.submit(
|
| 298 |
send_message,
|
| 299 |
+
inputs=[msg, chatbot, max_tokens, temperature, top_k, top_p],
|
| 300 |
outputs=[chatbot, msg]
|
| 301 |
)
|
| 302 |
|
module_3_3.ipynb
ADDED
|
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [
|
| 8 |
+
{
|
| 9 |
+
"name": "stdout",
|
| 10 |
+
"output_type": "stream",
|
| 11 |
+
"text": [
|
| 12 |
+
"Using device: mps\n",
|
| 13 |
+
"tensor([ 0, 61, 1, 61, 2, 61, 0, 61, 3], device='mps:0')\n"
|
| 14 |
+
]
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"data": {
|
| 18 |
+
"text/plain": [
|
| 19 |
+
"torch.Size([4, 32])"
|
| 20 |
+
]
|
| 21 |
+
},
|
| 22 |
+
"execution_count": 1,
|
| 23 |
+
"metadata": {},
|
| 24 |
+
"output_type": "execute_result"
|
| 25 |
+
}
|
| 26 |
+
],
|
| 27 |
+
"source": [
|
| 28 |
+
"import torch\n",
|
| 29 |
+
"\n",
|
| 30 |
+
"from usta_model import UstaModel\n",
|
| 31 |
+
"from usta_tokenizer import UstaTokenizer\n",
|
| 32 |
+
"\n",
|
| 33 |
+
"device = \"cpu\"\n",
|
| 34 |
+
"\n",
|
| 35 |
+
"if torch.cuda.is_available():\n",
|
| 36 |
+
" device = \"cuda\"\n",
|
| 37 |
+
"elif torch.backends.mps.is_available():\n",
|
| 38 |
+
" device = \"mps\"\n",
|
| 39 |
+
" \n",
|
| 40 |
+
"\n",
|
| 41 |
+
"print(f\"Using device: {device}\")\n",
|
| 42 |
+
"\n",
|
| 43 |
+
"u_tokenizer = UstaTokenizer(\"tokenizer.json\")\n",
|
| 44 |
+
"\n",
|
| 45 |
+
"prompts = [\n",
|
| 46 |
+
" \"the capital of the united\",\n",
|
| 47 |
+
" \"madrid is in\",\n",
|
| 48 |
+
" \"the capital of france is\",\n",
|
| 49 |
+
" \"the capital of germany is\"\n",
|
| 50 |
+
"]\n",
|
| 51 |
+
"\n",
|
| 52 |
+
"tokens = u_tokenizer.encode(prompts[0])\n",
|
| 53 |
+
"tokens = tokens.to(device)\n",
|
| 54 |
+
"print(tokens)\n",
|
| 55 |
+
"batch_tokens = u_tokenizer.encode_batch(prompts, 32)\n",
|
| 56 |
+
"batch_tokens = batch_tokens.to(device)\n",
|
| 57 |
+
"batch_tokens.shape"
|
| 58 |
+
]
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"cell_type": "code",
|
| 62 |
+
"execution_count": 2,
|
| 63 |
+
"metadata": {},
|
| 64 |
+
"outputs": [
|
| 65 |
+
{
|
| 66 |
+
"data": {
|
| 67 |
+
"text/plain": [
|
| 68 |
+
"<All keys matched successfully>"
|
| 69 |
+
]
|
| 70 |
+
},
|
| 71 |
+
"execution_count": 2,
|
| 72 |
+
"metadata": {},
|
| 73 |
+
"output_type": "execute_result"
|
| 74 |
+
}
|
| 75 |
+
],
|
| 76 |
+
"source": [
|
| 77 |
+
"torch.manual_seed(1)\n",
|
| 78 |
+
"context_length = 32\n",
|
| 79 |
+
"\n",
|
| 80 |
+
"u_model = UstaModel(\n",
|
| 81 |
+
" vocab_size=len(u_tokenizer.vocab),\n",
|
| 82 |
+
" embedding_dim=12,\n",
|
| 83 |
+
" num_heads=4,\n",
|
| 84 |
+
" context_length=context_length,\n",
|
| 85 |
+
" num_layers=8,\n",
|
| 86 |
+
" device=device\n",
|
| 87 |
+
")\n",
|
| 88 |
+
"\n",
|
| 89 |
+
"# load model\n",
|
| 90 |
+
"u_model.load_state_dict(torch.load(\"../u_model_4000.pth\"))"
|
| 91 |
+
]
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"cell_type": "code",
|
| 95 |
+
"execution_count": 3,
|
| 96 |
+
"metadata": {},
|
| 97 |
+
"outputs": [
|
| 98 |
+
{
|
| 99 |
+
"data": {
|
| 100 |
+
"text/plain": [
|
| 101 |
+
"torch.Size([4, 32, 64])"
|
| 102 |
+
]
|
| 103 |
+
},
|
| 104 |
+
"execution_count": 3,
|
| 105 |
+
"metadata": {},
|
| 106 |
+
"output_type": "execute_result"
|
| 107 |
+
}
|
| 108 |
+
],
|
| 109 |
+
"source": [
|
| 110 |
+
"out = u_model(batch_tokens)\n",
|
| 111 |
+
"out.shape"
|
| 112 |
+
]
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"cell_type": "code",
|
| 116 |
+
"execution_count": 4,
|
| 117 |
+
"metadata": {},
|
| 118 |
+
"outputs": [],
|
| 119 |
+
"source": [
|
| 120 |
+
"# temperature\n",
|
| 121 |
+
"# top_k \n",
|
| 122 |
+
"# top_p\n"
|
| 123 |
+
]
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"cell_type": "code",
|
| 127 |
+
"execution_count": 5,
|
| 128 |
+
"metadata": {},
|
| 129 |
+
"outputs": [],
|
| 130 |
+
"source": [
|
| 131 |
+
"top_k = 10"
|
| 132 |
+
]
|
| 133 |
+
},
|
| 134 |
+
{
|
| 135 |
+
"cell_type": "code",
|
| 136 |
+
"execution_count": 6,
|
| 137 |
+
"metadata": {},
|
| 138 |
+
"outputs": [
|
| 139 |
+
{
|
| 140 |
+
"data": {
|
| 141 |
+
"text/plain": [
|
| 142 |
+
"(tensor([17.6884, 14.0799, 9.0104, 8.4548, 7.3207, 7.2960, 6.8096, 6.6073,\n",
|
| 143 |
+
" 6.6009, 6.3761]),\n",
|
| 144 |
+
" [61, 60, 35, 58, 9, 38, 59, 4, 18, 49])"
|
| 145 |
+
]
|
| 146 |
+
},
|
| 147 |
+
"execution_count": 6,
|
| 148 |
+
"metadata": {},
|
| 149 |
+
"output_type": "execute_result"
|
| 150 |
+
}
|
| 151 |
+
],
|
| 152 |
+
"source": [
|
| 153 |
+
"sorted_outs = sorted(out[-1][-1].tolist(), reverse=True)\n",
|
| 154 |
+
"sorted_indexes = []\n",
|
| 155 |
+
"for so in sorted_outs[:top_k]:\n",
|
| 156 |
+
" so_index = out[-1][-1].tolist().index(so)\n",
|
| 157 |
+
" sorted_indexes.append(so_index)\n",
|
| 158 |
+
"sorted_outs = torch.tensor(sorted_outs[:top_k])\n",
|
| 159 |
+
"sorted_outs, sorted_indexes\n"
|
| 160 |
+
]
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"cell_type": "code",
|
| 164 |
+
"execution_count": 7,
|
| 165 |
+
"metadata": {},
|
| 166 |
+
"outputs": [
|
| 167 |
+
{
|
| 168 |
+
"data": {
|
| 169 |
+
"text/plain": [
|
| 170 |
+
"(tensor([17.6884, 14.0799, 9.0104, 8.4548, 7.3207, 7.2960, 6.8096, 6.6073,\n",
|
| 171 |
+
" 6.6009, 6.3761], device='mps:0', grad_fn=<TopkBackward0>),\n",
|
| 172 |
+
" tensor([61, 60, 35, 58, 9, 38, 59, 4, 18, 49], device='mps:0'))"
|
| 173 |
+
]
|
| 174 |
+
},
|
| 175 |
+
"execution_count": 7,
|
| 176 |
+
"metadata": {},
|
| 177 |
+
"output_type": "execute_result"
|
| 178 |
+
}
|
| 179 |
+
],
|
| 180 |
+
"source": [
|
| 181 |
+
"values, indexes = torch.topk(out[-1][-1], k=10)\n",
|
| 182 |
+
"values, indexes"
|
| 183 |
+
]
|
| 184 |
+
},
|
| 185 |
+
{
|
| 186 |
+
"cell_type": "code",
|
| 187 |
+
"execution_count": null,
|
| 188 |
+
"metadata": {},
|
| 189 |
+
"outputs": [],
|
| 190 |
+
"source": []
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"cell_type": "code",
|
| 194 |
+
"execution_count": 8,
|
| 195 |
+
"metadata": {},
|
| 196 |
+
"outputs": [
|
| 197 |
+
{
|
| 198 |
+
"name": "stderr",
|
| 199 |
+
"output_type": "stream",
|
| 200 |
+
"text": [
|
| 201 |
+
"/var/folders/z7/wrd0w0hn7pvb9g97kmdn17640000gn/T/ipykernel_91075/2885985782.py:2: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.detach().clone() or sourceTensor.detach().clone().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 202 |
+
" adjusted_outs = torch.tensor(sorted_outs) / temperature\n"
|
| 203 |
+
]
|
| 204 |
+
},
|
| 205 |
+
{
|
| 206 |
+
"data": {
|
| 207 |
+
"text/plain": [
|
| 208 |
+
"tensor([1.6830, 1.3397, 0.8573, 0.8045, 0.6965, 0.6942, 0.6479, 0.6287, 0.6281,\n",
|
| 209 |
+
" 0.6067])"
|
| 210 |
+
]
|
| 211 |
+
},
|
| 212 |
+
"execution_count": 8,
|
| 213 |
+
"metadata": {},
|
| 214 |
+
"output_type": "execute_result"
|
| 215 |
+
}
|
| 216 |
+
],
|
| 217 |
+
"source": [
|
| 218 |
+
"temperature = 10.51\n",
|
| 219 |
+
"adjusted_outs = torch.tensor(sorted_outs) / temperature\n",
|
| 220 |
+
"adjusted_outs"
|
| 221 |
+
]
|
| 222 |
+
},
|
| 223 |
+
{
|
| 224 |
+
"cell_type": "code",
|
| 225 |
+
"execution_count": 9,
|
| 226 |
+
"metadata": {},
|
| 227 |
+
"outputs": [
|
| 228 |
+
{
|
| 229 |
+
"data": {
|
| 230 |
+
"text/plain": [
|
| 231 |
+
"tensor([0.2128, 0.1509, 0.0932, 0.0884, 0.0793, 0.0791, 0.0756, 0.0741, 0.0741,\n",
|
| 232 |
+
" 0.0725])"
|
| 233 |
+
]
|
| 234 |
+
},
|
| 235 |
+
"execution_count": 9,
|
| 236 |
+
"metadata": {},
|
| 237 |
+
"output_type": "execute_result"
|
| 238 |
+
}
|
| 239 |
+
],
|
| 240 |
+
"source": [
|
| 241 |
+
"probs = torch.softmax(adjusted_outs, dim=-1)\n",
|
| 242 |
+
"probs"
|
| 243 |
+
]
|
| 244 |
+
},
|
| 245 |
+
{
|
| 246 |
+
"cell_type": "code",
|
| 247 |
+
"execution_count": 10,
|
| 248 |
+
"metadata": {},
|
| 249 |
+
"outputs": [],
|
| 250 |
+
"source": [
|
| 251 |
+
"top_p = 0.7"
|
| 252 |
+
]
|
| 253 |
+
},
|
| 254 |
+
{
|
| 255 |
+
"cell_type": "code",
|
| 256 |
+
"execution_count": 11,
|
| 257 |
+
"metadata": {},
|
| 258 |
+
"outputs": [
|
| 259 |
+
{
|
| 260 |
+
"data": {
|
| 261 |
+
"text/plain": [
|
| 262 |
+
"tensor(0.5453)"
|
| 263 |
+
]
|
| 264 |
+
},
|
| 265 |
+
"execution_count": 11,
|
| 266 |
+
"metadata": {},
|
| 267 |
+
"output_type": "execute_result"
|
| 268 |
+
}
|
| 269 |
+
],
|
| 270 |
+
"source": [
|
| 271 |
+
"[0.2128, 0.36, 0.37, 0.38, 0.70, 0.71]\n",
|
| 272 |
+
"torch.sum(torch.tensor([0.2128, 0.1509, 0.0932, 0.0884]))"
|
| 273 |
+
]
|
| 274 |
+
},
|
| 275 |
+
{
|
| 276 |
+
"cell_type": "code",
|
| 277 |
+
"execution_count": 12,
|
| 278 |
+
"metadata": {},
|
| 279 |
+
"outputs": [
|
| 280 |
+
{
|
| 281 |
+
"data": {
|
| 282 |
+
"text/plain": [
|
| 283 |
+
"{0: 212, 4: 82, 5: 87, 9: 83, 2: 74, 6: 73, 1: 154, 3: 91, 8: 80, 7: 64}"
|
| 284 |
+
]
|
| 285 |
+
},
|
| 286 |
+
"execution_count": 12,
|
| 287 |
+
"metadata": {},
|
| 288 |
+
"output_type": "execute_result"
|
| 289 |
+
}
|
| 290 |
+
],
|
| 291 |
+
"source": [
|
| 292 |
+
"sample_count = {}\n",
|
| 293 |
+
"for _ in range(1000):\n",
|
| 294 |
+
" sample = torch.multinomial(probs, 1)\n",
|
| 295 |
+
" sample_count[sample.item()] = sample_count.get(sample.item(), 0) + 1\n",
|
| 296 |
+
"sample_count"
|
| 297 |
+
]
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"cell_type": "code",
|
| 301 |
+
"execution_count": 14,
|
| 302 |
+
"metadata": {},
|
| 303 |
+
"outputs": [
|
| 304 |
+
{
|
| 305 |
+
"data": {
|
| 306 |
+
"text/plain": [
|
| 307 |
+
"{'the capital of the united.': 3,\n",
|
| 308 |
+
" 'the capital of the united the ': 22,\n",
|
| 309 |
+
" 'the capital of the united identity,': 1,\n",
|
| 310 |
+
" 'the capital of the united capitals': 5,\n",
|
| 311 |
+
" 'the capital of the united country ': 8,\n",
|
| 312 |
+
" 'the capital of the united europe ': 26,\n",
|
| 313 |
+
" 'the capital of the united is ': 7,\n",
|
| 314 |
+
" 'the capital of the united place ': 4,\n",
|
| 315 |
+
" 'the capital of the united europe,': 3,\n",
|
| 316 |
+
" 'the capital of the united united ': 6,\n",
|
| 317 |
+
" 'the capital of the united for ': 1,\n",
|
| 318 |
+
" 'the capital of the united spain,': 2,\n",
|
| 319 |
+
" 'the capital of the united europe.': 1,\n",
|
| 320 |
+
" 'the capital of the united italy,': 4,\n",
|
| 321 |
+
" 'the capital of the united art ': 1,\n",
|
| 322 |
+
" 'the capital of the united of ': 1,\n",
|
| 323 |
+
" 'the capital of the united united': 1,\n",
|
| 324 |
+
" 'the capital of the united capitaled': 1,\n",
|
| 325 |
+
" 'the capital of the united, country': 1,\n",
|
| 326 |
+
" 'the capital of the united place.': 1,\n",
|
| 327 |
+
" 'the capital of the united, europe': 1}"
|
| 328 |
+
]
|
| 329 |
+
},
|
| 330 |
+
"execution_count": 14,
|
| 331 |
+
"metadata": {},
|
| 332 |
+
"output_type": "execute_result"
|
| 333 |
+
}
|
| 334 |
+
],
|
| 335 |
+
"source": [
|
| 336 |
+
"outs = {}\n",
|
| 337 |
+
"for _ in range(100):\n",
|
| 338 |
+
" out = u_model.generate(tokens, max_new_tokens = 3, temperature = 1.7, top_k = 10, top_p = 0.7)\n",
|
| 339 |
+
" decoded = u_tokenizer.decode(out)\n",
|
| 340 |
+
" outs[decoded] = outs.get(decoded, 0) + 1\n",
|
| 341 |
+
"outs"
|
| 342 |
+
]
|
| 343 |
+
}
|
| 344 |
+
],
|
| 345 |
+
"metadata": {
|
| 346 |
+
"kernelspec": {
|
| 347 |
+
"display_name": "Python 3",
|
| 348 |
+
"language": "python",
|
| 349 |
+
"name": "python3"
|
| 350 |
+
},
|
| 351 |
+
"language_info": {
|
| 352 |
+
"codemirror_mode": {
|
| 353 |
+
"name": "ipython",
|
| 354 |
+
"version": 3
|
| 355 |
+
},
|
| 356 |
+
"file_extension": ".py",
|
| 357 |
+
"mimetype": "text/x-python",
|
| 358 |
+
"name": "python",
|
| 359 |
+
"nbconvert_exporter": "python",
|
| 360 |
+
"pygments_lexer": "ipython3",
|
| 361 |
+
"version": "3.13.3"
|
| 362 |
+
}
|
| 363 |
+
},
|
| 364 |
+
"nbformat": 4,
|
| 365 |
+
"nbformat_minor": 2
|
| 366 |
+
}
|
v1/u_model.pth
DELETED
|
Binary file (97.2 kB)
|
|
|
{v1 β v2}/__init__.py
RENAMED
|
File without changes
|
{v1 β v2}/tokenizer.json
RENAMED
|
File without changes
|
v2/u_model_4000.pth
ADDED
|
Binary file (96.1 kB). View file
|
|
|
{v1 β v2}/usta_causal_attention.py
RENAMED
|
File without changes
|
{v1 β v2}/usta_decoder_block.py
RENAMED
|
@@ -6,17 +6,23 @@ from .usta_multi_head_attention import UstaMultiHeadAttention
|
|
| 6 |
|
| 7 |
|
| 8 |
class UstaDecoderBlock(nn.Module):
|
| 9 |
-
def __init__(self, embedding_dim, num_heads, context_length):
|
| 10 |
super().__init__()
|
| 11 |
|
| 12 |
-
self.self_attention = UstaMultiHeadAttention(
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
def forward(self, x):
|
| 18 |
res = self.norm1(x)
|
| 19 |
-
|
| 20 |
x = self.self_attention(x)
|
| 21 |
x = self.norm1(x)
|
| 22 |
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
class UstaDecoderBlock(nn.Module):
|
| 9 |
+
def __init__(self, embedding_dim, num_heads, context_length, device):
|
| 10 |
super().__init__()
|
| 11 |
|
| 12 |
+
self.self_attention = UstaMultiHeadAttention(
|
| 13 |
+
embedding_dim,
|
| 14 |
+
embedding_dim,
|
| 15 |
+
context_length,
|
| 16 |
+
num_heads,
|
| 17 |
+
dropout_rate=0.5,
|
| 18 |
+
device=device
|
| 19 |
+
)
|
| 20 |
+
self.norm1 = UstaLayerNorm(embedding_dim, device=device)
|
| 21 |
+
self.mlp = UstaMLP(embedding_dim, embedding_dim, device=device)
|
| 22 |
+
self.norm2 = UstaLayerNorm(embedding_dim, device=device)
|
| 23 |
|
| 24 |
def forward(self, x):
|
| 25 |
res = self.norm1(x)
|
|
|
|
| 26 |
x = self.self_attention(x)
|
| 27 |
x = self.norm1(x)
|
| 28 |
|
{v1 β v2}/usta_embedding.py
RENAMED
|
@@ -3,7 +3,7 @@ import torch.nn as nn
|
|
| 3 |
|
| 4 |
|
| 5 |
def get_rotary_position_encoding(input: torch.Tensor, base=10000, device="cpu"):
|
| 6 |
-
context_length, dimension = input.shape
|
| 7 |
|
| 8 |
assert dimension % 2 == 0, "dimension must be even"
|
| 9 |
|
|
@@ -20,30 +20,31 @@ def get_rotary_position_encoding(input: torch.Tensor, base=10000, device="cpu"):
|
|
| 20 |
sin_angles = torch.sin(angles)
|
| 21 |
cos_angles = torch.cos(angles)
|
| 22 |
|
| 23 |
-
input_even = input[:, :dimension // 2] # [0, 2, 4, ..]
|
| 24 |
-
input_odd = input[:, dimension // 2:] # [1, 3, 5, ..]
|
| 25 |
|
| 26 |
input_even_rotated = input_even * cos_angles - input_odd * sin_angles
|
| 27 |
input_odd_rotated = input_even * sin_angles + input_odd * cos_angles
|
| 28 |
|
| 29 |
-
input_rotated = torch.empty_like(input)
|
| 30 |
|
| 31 |
-
input_rotated[:, :dimension // 2] = input_even_rotated
|
| 32 |
-
input_rotated[:, dimension // 2:] = input_odd_rotated
|
| 33 |
|
| 34 |
return input_rotated
|
| 35 |
|
| 36 |
class UstaEmbedding(nn.Module):
|
| 37 |
-
def __init__(self, vocab_size, embedding_dim, context_length):
|
| 38 |
super().__init__()
|
| 39 |
# position embedding but not being used in the forward pass
|
| 40 |
# it is just for educational purposes
|
| 41 |
# self.pos_embedding = nn.Embedding(context_length, embedding_dim)
|
| 42 |
# self.get_pos = get_rotary_position_encoding
|
| 43 |
-
self.embedding = nn.Embedding(vocab_size, embedding_dim)
|
| 44 |
self.get_pos = get_rotary_position_encoding
|
|
|
|
| 45 |
|
| 46 |
def forward(self, x):
|
| 47 |
x = self.embedding(x)
|
| 48 |
-
x = self.get_pos(x)
|
| 49 |
return x
|
|
|
|
| 3 |
|
| 4 |
|
| 5 |
def get_rotary_position_encoding(input: torch.Tensor, base=10000, device="cpu"):
|
| 6 |
+
batch_size, context_length, dimension = input.shape
|
| 7 |
|
| 8 |
assert dimension % 2 == 0, "dimension must be even"
|
| 9 |
|
|
|
|
| 20 |
sin_angles = torch.sin(angles)
|
| 21 |
cos_angles = torch.cos(angles)
|
| 22 |
|
| 23 |
+
input_even = input[:, :, :dimension // 2] # [0, 2, 4, ..]
|
| 24 |
+
input_odd = input[:, :, dimension // 2:] # [1, 3, 5, ..]
|
| 25 |
|
| 26 |
input_even_rotated = input_even * cos_angles - input_odd * sin_angles
|
| 27 |
input_odd_rotated = input_even * sin_angles + input_odd * cos_angles
|
| 28 |
|
| 29 |
+
input_rotated = torch.empty_like(input, device=device)
|
| 30 |
|
| 31 |
+
input_rotated[:, :, :dimension // 2] = input_even_rotated
|
| 32 |
+
input_rotated[:, :, dimension // 2:] = input_odd_rotated
|
| 33 |
|
| 34 |
return input_rotated
|
| 35 |
|
| 36 |
class UstaEmbedding(nn.Module):
|
| 37 |
+
def __init__(self, vocab_size, embedding_dim, context_length, device):
|
| 38 |
super().__init__()
|
| 39 |
# position embedding but not being used in the forward pass
|
| 40 |
# it is just for educational purposes
|
| 41 |
# self.pos_embedding = nn.Embedding(context_length, embedding_dim)
|
| 42 |
# self.get_pos = get_rotary_position_encoding
|
| 43 |
+
self.embedding = nn.Embedding(vocab_size, embedding_dim, device=device)
|
| 44 |
self.get_pos = get_rotary_position_encoding
|
| 45 |
+
self.device = device
|
| 46 |
|
| 47 |
def forward(self, x):
|
| 48 |
x = self.embedding(x)
|
| 49 |
+
x = self.get_pos(x, device=self.device)
|
| 50 |
return x
|
{v1 β v2}/usta_layer_norm.py
RENAMED
|
@@ -3,13 +3,12 @@ import torch.nn as nn
|
|
| 3 |
|
| 4 |
|
| 5 |
class UstaLayerNorm(nn.Module):
|
| 6 |
-
def __init__(self, embedding_dim, eps=1e-5):
|
| 7 |
super().__init__()
|
| 8 |
self.eps = eps
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
self.weight = nn.Parameter(torch.ones(embedding_dim))
|
| 11 |
-
|
| 12 |
-
|
| 13 |
def forward(self, x):
|
| 14 |
mean = x.mean(dim=-1, keepdim=True)
|
| 15 |
variance = x.var(dim=-1, keepdim=True, unbiased=False)
|
|
|
|
| 3 |
|
| 4 |
|
| 5 |
class UstaLayerNorm(nn.Module):
|
| 6 |
+
def __init__(self, embedding_dim, eps=1e-5, device="cpu"):
|
| 7 |
super().__init__()
|
| 8 |
self.eps = eps
|
| 9 |
+
self.weight = nn.Parameter(torch.ones(embedding_dim, device=device))
|
| 10 |
+
self.device = device
|
| 11 |
|
|
|
|
|
|
|
|
|
|
| 12 |
def forward(self, x):
|
| 13 |
mean = x.mean(dim=-1, keepdim=True)
|
| 14 |
variance = x.var(dim=-1, keepdim=True, unbiased=False)
|
{v1 β v2}/usta_mlp.py
RENAMED
|
@@ -14,13 +14,13 @@ class GELU(nn.Module):
|
|
| 14 |
)
|
| 15 |
|
| 16 |
class UstaMLP(nn.Module):
|
| 17 |
-
def __init__(self, embedding_dim, hidden_dim):
|
| 18 |
super().__init__()
|
| 19 |
|
| 20 |
-
self.gate_proj = nn.Linear(embedding_dim, hidden_dim)
|
| 21 |
-
self.up_proj = nn.Linear(embedding_dim, hidden_dim)
|
| 22 |
-
self.down_proj = nn.Linear(hidden_dim, embedding_dim)
|
| 23 |
-
self.gelu = GELU()
|
| 24 |
|
| 25 |
def forward(self, x):
|
| 26 |
""" gate = self.gate_proj(x)
|
|
|
|
| 14 |
)
|
| 15 |
|
| 16 |
class UstaMLP(nn.Module):
|
| 17 |
+
def __init__(self, embedding_dim, hidden_dim, device="cpu"):
|
| 18 |
super().__init__()
|
| 19 |
|
| 20 |
+
self.gate_proj = nn.Linear(embedding_dim, hidden_dim, device=device)
|
| 21 |
+
self.up_proj = nn.Linear(embedding_dim, hidden_dim, device=device)
|
| 22 |
+
self.down_proj = nn.Linear(hidden_dim, embedding_dim, device=device)
|
| 23 |
+
self.gelu = GELU().to(device)
|
| 24 |
|
| 25 |
def forward(self, x):
|
| 26 |
""" gate = self.gate_proj(x)
|
{v1 β v2}/usta_model.py
RENAMED
|
@@ -6,15 +6,16 @@ from .usta_embedding import UstaEmbedding
|
|
| 6 |
|
| 7 |
|
| 8 |
class UstaModel(nn.Module):
|
| 9 |
-
def __init__(self, vocab_size, embedding_dim, num_heads, context_length, num_layers):
|
| 10 |
super().__init__()
|
| 11 |
|
| 12 |
-
self.embedding = UstaEmbedding(vocab_size, embedding_dim, context_length)
|
| 13 |
self.layers = nn.Sequential(
|
| 14 |
-
*[UstaDecoderBlock(embedding_dim, num_heads, context_length) for _ in range(num_layers)]
|
| 15 |
)
|
| 16 |
|
| 17 |
-
self.lm_head = nn.Linear(embedding_dim, vocab_size)
|
|
|
|
| 18 |
|
| 19 |
def forward(self, x: torch.Tensor):
|
| 20 |
x = self.embedding(x) # dictionary meaning of the tokens (words)
|
|
@@ -32,13 +33,49 @@ class UstaModel(nn.Module):
|
|
| 32 |
max_prob, max_index, probs
|
| 33 |
"""
|
| 34 |
|
| 35 |
-
def
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
for _ in range(max_new_tokens):
|
|
|
|
| 39 |
out = self.forward(x)
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
tokens.append(max_index.item())
|
| 43 |
if max_index == 59 or len(tokens) > 32: # <eos> and max context length
|
| 44 |
break
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
class UstaModel(nn.Module):
|
| 9 |
+
def __init__(self, vocab_size, embedding_dim, num_heads, context_length, num_layers, device):
|
| 10 |
super().__init__()
|
| 11 |
|
| 12 |
+
self.embedding = UstaEmbedding(vocab_size, embedding_dim, context_length, device)
|
| 13 |
self.layers = nn.Sequential(
|
| 14 |
+
*[UstaDecoderBlock(embedding_dim, num_heads, context_length, device) for _ in range(num_layers)]
|
| 15 |
)
|
| 16 |
|
| 17 |
+
self.lm_head = nn.Linear(embedding_dim, vocab_size, device=device)
|
| 18 |
+
self.device = device
|
| 19 |
|
| 20 |
def forward(self, x: torch.Tensor):
|
| 21 |
x = self.embedding(x) # dictionary meaning of the tokens (words)
|
|
|
|
| 33 |
max_prob, max_index, probs
|
| 34 |
"""
|
| 35 |
|
| 36 |
+
def top_p_filtering(self, logits, top_p):
|
| 37 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 38 |
+
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
| 39 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
| 40 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 41 |
+
sorted_indices_to_remove[..., 0] = False
|
| 42 |
+
|
| 43 |
+
sorted_logits[sorted_indices_to_remove] = -float('inf')
|
| 44 |
+
filtered_logits = sorted_logits.clone()
|
| 45 |
+
filtered_logits.scatter_(0, sorted_indices, sorted_logits)
|
| 46 |
+
return filtered_logits
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def generate(self,
|
| 51 |
+
x: torch.Tensor,
|
| 52 |
+
max_new_tokens: int = 3,
|
| 53 |
+
temperature: float = 1.0,
|
| 54 |
+
top_k: int = 64,
|
| 55 |
+
top_p: float = 1.0
|
| 56 |
+
): # top_k, top_p, temperature
|
| 57 |
+
tokens = x.tolist()
|
| 58 |
|
| 59 |
for _ in range(max_new_tokens):
|
| 60 |
+
x = x.unsqueeze(0).to(self.device)
|
| 61 |
out = self.forward(x)
|
| 62 |
+
out = out.squeeze(0)
|
| 63 |
+
logits = out[-1]
|
| 64 |
+
if top_k > 0:
|
| 65 |
+
values, indexes = torch.topk(logits, k=top_k)
|
| 66 |
+
logits = torch.full_like(logits, -float('inf'))
|
| 67 |
+
logits.scatter_(0, indexes, values)
|
| 68 |
+
|
| 69 |
+
if top_p > 0 and top_p < 1:
|
| 70 |
+
logits = self.top_p_filtering(logits, top_p)
|
| 71 |
+
|
| 72 |
+
if temperature != 1.0 and temperature > 0:
|
| 73 |
+
logits = logits / temperature
|
| 74 |
+
|
| 75 |
+
probs = torch.softmax(values, dim=-1)
|
| 76 |
+
# _, max_index = torch.max(probs, dim=-1)
|
| 77 |
+
sample = torch.multinomial(probs, 1)
|
| 78 |
+
max_index = indexes[sample]
|
| 79 |
tokens.append(max_index.item())
|
| 80 |
if max_index == 59 or len(tokens) > 32: # <eos> and max context length
|
| 81 |
break
|
{v1 β v2}/usta_multi_head_attention.py
RENAMED
|
@@ -3,15 +3,15 @@ import torch.nn as nn
|
|
| 3 |
|
| 4 |
|
| 5 |
class UstaMultiHeadAttention(nn.Module):
|
| 6 |
-
def __init__(self, embedding_dim, output_dim, context_length, num_heads, dropout_rate = 0):
|
| 7 |
super().__init__()
|
| 8 |
|
| 9 |
self.context_length = context_length
|
| 10 |
|
| 11 |
-
self.multi_head_attention = nn.MultiheadAttention(embedding_dim, num_heads, dropout=dropout_rate)
|
| 12 |
-
self.projection = nn.Linear(embedding_dim, output_dim)
|
| 13 |
|
| 14 |
-
self.register_buffer("mask", torch.triu(torch.ones(context_length, context_length), diagonal=1).bool())
|
| 15 |
|
| 16 |
def forward(self, x):
|
| 17 |
number_of_tokens = x.shape[0]
|
|
|
|
| 3 |
|
| 4 |
|
| 5 |
class UstaMultiHeadAttention(nn.Module):
|
| 6 |
+
def __init__(self, embedding_dim, output_dim, context_length, num_heads, dropout_rate = 0, device="cpu"):
|
| 7 |
super().__init__()
|
| 8 |
|
| 9 |
self.context_length = context_length
|
| 10 |
|
| 11 |
+
self.multi_head_attention = nn.MultiheadAttention(embedding_dim, num_heads, dropout=dropout_rate, device=device)
|
| 12 |
+
self.projection = nn.Linear(embedding_dim, output_dim, device=device)
|
| 13 |
|
| 14 |
+
self.register_buffer("mask", torch.triu(torch.ones(context_length, context_length), diagonal=1).bool().to(device))
|
| 15 |
|
| 16 |
def forward(self, x):
|
| 17 |
number_of_tokens = x.shape[0]
|
{v1 β v2}/usta_multi_head_attention_old.py
RENAMED
|
@@ -22,5 +22,4 @@ class UstaMultiHeadAttention(nn.Module):
|
|
| 22 |
|
| 23 |
attention_out = torch.cat(attention_outs, dim=1)
|
| 24 |
|
| 25 |
-
return self.projection(attention_out)
|
| 26 |
-
|
|
|
|
| 22 |
|
| 23 |
attention_out = torch.cat(attention_outs, dim=1)
|
| 24 |
|
| 25 |
+
return self.projection(attention_out)
|
|
|
{v1 β v2}/usta_self_attention.py
RENAMED
|
File without changes
|
{v1 β v2}/usta_tokenizer.py
RENAMED
|
@@ -9,6 +9,19 @@ class UstaTokenizer:
|
|
| 9 |
self.vocab = json.load(f)
|
| 10 |
self.reverse_vocab = {v: k for k, v in self.vocab.items()}
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
def encode(self, text):
|
| 13 |
tokens = []
|
| 14 |
|
|
@@ -31,7 +44,9 @@ class UstaTokenizer:
|
|
| 31 |
i += 1
|
| 32 |
tokens.append(self.vocab[" "])
|
| 33 |
|
| 34 |
-
|
|
|
|
|
|
|
| 35 |
return torch.tensor(tokens)
|
| 36 |
|
| 37 |
def tokenize(self, text):
|
|
|
|
| 9 |
self.vocab = json.load(f)
|
| 10 |
self.reverse_vocab = {v: k for k, v in self.vocab.items()}
|
| 11 |
|
| 12 |
+
def encode_batch(self, texts, context_length):
|
| 13 |
+
sentences_tokens = []
|
| 14 |
+
for text in texts:
|
| 15 |
+
tokens = self.encode(text).tolist()
|
| 16 |
+
if len(tokens) > context_length:
|
| 17 |
+
tokens = tokens[:context_length]
|
| 18 |
+
else:
|
| 19 |
+
tokens = tokens + [self.vocab["<pad>"]] * (context_length - len(tokens))
|
| 20 |
+
|
| 21 |
+
sentences_tokens.append(tokens)
|
| 22 |
+
|
| 23 |
+
return torch.tensor(sentences_tokens)
|
| 24 |
+
|
| 25 |
def encode(self, text):
|
| 26 |
tokens = []
|
| 27 |
|
|
|
|
| 44 |
i += 1
|
| 45 |
tokens.append(self.vocab[" "])
|
| 46 |
|
| 47 |
+
# check if text is not ends with a space
|
| 48 |
+
if not text.endswith(" "):
|
| 49 |
+
tokens.pop()
|
| 50 |
return torch.tensor(tokens)
|
| 51 |
|
| 52 |
def tokenize(self, text):
|