tdocaibot / search.py
H
start
21583be verified
raw
history blame
5.27 kB
import openai
from docx import Document
from pdfminer.high_level import extract_text
from transformers import GPT2Tokenizer
from dataclasses import dataclass
from typing import List
from tqdm import tqdm
import os
import pandas as pd
import re
EMBEDDING_SEG_LEN = 1500
COMPLETIONS_MODEL = "text-davinci-003"
EMBEDDING_MODEL = "gpt-4"
openai.api_key = os.environ["OPENAI_API_KEY"]
EMBEDDING_CTX_LENGTH = 8191
EMBEDDING_ENCODING = "cl100k_base"
ENCODING = "gpt2"
@dataclass
class Paragraph:
page_num: int
paragraph_num: int
content: str
def read_pdf_pdfminer(file_path) -> List[Paragraph]:
text = extract_text(file_path).replace('\n', ' ').strip()
paragraphs = batched(text, EMBEDDING_SEG_LEN)
paragraphs_objs = []
paragraph_num = 1
for p in paragraphs:
para = Paragraph(0, paragraph_num, p)
paragraphs_objs.append(para)
paragraph_num += 1
return paragraphs_objs
def read_docx(file) -> List[Paragraph]:
doc = Document(file)
paragraphs = []
for paragraph_num, paragraph in enumerate(doc.paragraphs, start=1):
content = paragraph.text.strip()
if content:
para = Paragraph(1, paragraph_num, content)
paragraphs.append(para)
return paragraphs
def count_tokens(text):
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
return len(tokenizer.encode(text))
def batched(iterable, n):
l = len(iterable)
for ndx in range(0, l, n):
yield iterable[ndx : min(ndx + n, l)]
def compute_doc_embeddings(df):
embeddings = {}
for index, row in tqdm(df.iterrows(), total=df.shape[0]):
doc = row["content"]
doc_embedding = get_embedding(doc)
embeddings[index] = doc_embedding
return embeddings
def enhanced_context_extraction(document, keywords, top_n=5):
paragraphs = [para for para in document.split("\n") if para]
def score_paragraph(para, keywords):
keyword_count = sum([para.lower().count(keyword) for keyword in keywords])
positions = [para.lower().find(keyword) for keyword in keywords if keyword in para.lower()]
proximity_score = 1 if max(positions) else 0
return keyword_count + proximity_score
scores = [score_paragraph(para, keywords) for para in paragraphs]
top_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:top_n]
relevant_paragraphs = [paragraphs[i] for i in top_indices]
return " ".join(relevant_paragraphs)
def targeted_context_extraction(document, keywords, top_n=5):
paragraphs = [para for para in document.split("\n") if para]
scores = [sum([para.lower().count(keyword) for keyword in keywords]) for para in paragraphs]
top_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:top_n]
relevant_paragraphs = [paragraphs[i] for i in top_indices]
return " ".join(relevant_paragraphs)
def extract_page_and_clause_references(paragraph: str) -> str:
page_matches = re.findall(r'Page (\d+)', paragraph)
clause_matches = re.findall(r'Clause (\d+\.\d+)', paragraph)
page_ref = f"Page {page_matches[0]}" if page_matches else ""
clause_ref = f"Clause {clause_matches[0]}" if clause_matches else ""
return f"({page_ref}, {clause_ref})".strip(", ")
def refine_answer_based_on_question(question: str, answer: str) -> str:
if "Does the agreement contain" in question:
if "not" in answer or "No" in answer:
refined_answer = f"No, the agreement does not contain {answer}"
else:
refined_answer = f"Yes, the agreement contains {answer}"
else:
refined_answer = answer
return refined_answer
def answer_query_with_context(question: str, df: pd.DataFrame, top_n_paragraphs: int = 5) -> str:
question_words = set(question.split())
# Prioritizing certain keywords for better context extraction
priority_keywords = ["duration", "term", "period", "month", "year", "day", "week", "agreement", "obligation", "effective date"]
df['relevance_score'] = df['content'].apply(lambda x: len(question_words.intersection(set(x.split()))) + sum([x.lower().count(pk) for pk in priority_keywords]))
most_relevant_paragraphs = df.sort_values(by='relevance_score', ascending=False).iloc[:top_n_paragraphs]['content'].tolist()
context = "\n\n".join(most_relevant_paragraphs)
prompt = f"Question: {question}\n\nContext: {context}\n\nAnswer:"
response = openai.Completion.create(model=COMPLETIONS_MODEL, prompt=prompt, max_tokens=150)
answer = response.choices[0].text.strip()
# Refine the answer to include page and clause references and match the phrasing of the question
references = extract_page_and_clause_references(context)
answer = refine_answer_based_on_question(question, answer) + " " + references
return answer
def get_embedding(text):
try:
response = openai.Embed.create(
model=EMBEDDING_MODEL,
context=text,
context_encoding=EMBEDDING_ENCODING,
context_length=EMBEDDING_CTX_LENGTH
)
embedding = response["embedding"]
except Exception as e:
print("Error obtaining embedding:", e)
embedding = []
return embedding