Lstm / app.py
aksha1141's picture
Create app.py
dd4eb07 verified
from flask import Flask, request, jsonify
from flask_cors import CORS
import tensorflow as tf
import numpy as np
import pickle
app = Flask(__name__)
CORS(app) # Allow frontend (CodePen) to access this API
# Load trained LSTM model
model = tf.keras.models.load_model("nse_lstm_model_fixed.h5") # Update with correct model path
# Load MinMaxScaler for inverse transformation
with open("close_price_scaler.pkl", "rb") as f:
close_scaler = pickle.load(f)
@app.route('/predict', methods=['POST'])
def predict():
try:
data = request.json['features'] # Receive stock data from frontend
input_data = np.array(data).reshape(1, 60, 7) # Ensure correct shape
# Make prediction
prediction = model.predict(input_data)
predicted_price = close_scaler.inverse_transform(prediction.reshape(-1, 1)).flatten()[0]
return jsonify({'predicted_price': round(predicted_price, 2)})
except Exception as e:
return jsonify({'error': str(e)})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000, debug=True)