Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify
|
| 2 |
+
from flask_cors import CORS
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
import numpy as np
|
| 5 |
+
import pickle
|
| 6 |
+
|
| 7 |
+
app = Flask(__name__)
|
| 8 |
+
CORS(app) # Allow frontend (CodePen) to access this API
|
| 9 |
+
|
| 10 |
+
# Load trained LSTM model
|
| 11 |
+
model = tf.keras.models.load_model("nse_lstm_model_fixed.h5") # Update with correct model path
|
| 12 |
+
|
| 13 |
+
# Load MinMaxScaler for inverse transformation
|
| 14 |
+
with open("close_price_scaler.pkl", "rb") as f:
|
| 15 |
+
close_scaler = pickle.load(f)
|
| 16 |
+
|
| 17 |
+
@app.route('/predict', methods=['POST'])
|
| 18 |
+
def predict():
|
| 19 |
+
try:
|
| 20 |
+
data = request.json['features'] # Receive stock data from frontend
|
| 21 |
+
input_data = np.array(data).reshape(1, 60, 7) # Ensure correct shape
|
| 22 |
+
|
| 23 |
+
# Make prediction
|
| 24 |
+
prediction = model.predict(input_data)
|
| 25 |
+
predicted_price = close_scaler.inverse_transform(prediction.reshape(-1, 1)).flatten()[0]
|
| 26 |
+
|
| 27 |
+
return jsonify({'predicted_price': round(predicted_price, 2)})
|
| 28 |
+
|
| 29 |
+
except Exception as e:
|
| 30 |
+
return jsonify({'error': str(e)})
|
| 31 |
+
if __name__ == '__main__':
|
| 32 |
+
app.run(host='0.0.0.0', port=5000, debug=True)
|