Spaces:
Running
on
CPU Upgrade
latentsplat
๐: Help me understand the following code by explaining it to me: from abc import ABC, abstractmethod
from typing import Generic, Optional, TypeVar
from jaxtyping import Float
from torch import nn, Tensor
from ...dataset.types import BatchedViews, DataShim
from ..types import VariationalGaussians
T = TypeVar("T")
class Encoder(nn.Module, ABC, Generic[T]):
cfg: T
variational: bool
def __init__(
self,
cfg: T,
variational: bool
) -> None:
super().__init__()
self.cfg = cfg
self.variational = variational
@abstractmethod
def forward(
self,
context: BatchedViews,
features: Optional[Float[Tensor, "bv d_in h w"]] = None,
deterministic: bool = False
) -> VariationalGaussians:
pass
def get_data_shim(self) -> DataShim:
"""The default shim doesn't modify the batch."""
return lambda x: x
@property
@abstractmethod
def last_layer_weights(self) -> Tensor | None:
pass
๐ค: Certainly! Let's break down this code snippet step by step:
Imports and Type Definitions
from abc import ABC, abstractmethod
from typing import Generic, Optional, TypeVar
from jaxtyping import Float
from torch import nn, Tensor
from abc import ABC, abstractmethod
: This imports theABC
(Abstract Base Class) andabstractmethod
decorators from theabc
module. These are used to define abstract classes and methods in Python.from typing import Generic, Optional, TypeVar
: This importsGeneric
,Optional
, andTypeVar
from thetyping
module. These are used for type hinting generic types, optional types, and defining type variables.from jaxtyping import Float
: This imports theFloat
type from thejaxtyping
library, which is used for more specific type annotations, particularly with tensors.from torch import nn, Tensor
: This imports thenn
(neural network) module and theTensor
class from the PyTorch library.
Type Variables and Aliases
T = TypeVar("T")
T = TypeVar("T")
: This defines a type variableT
. This allows the classEncoder
to be parameterized with any type that will be specified when creating an instance of the class.
The Encoder
Class
class Encoder(nn.Module, ABC, Generic[T]):
cfg: T
variational: bool
Encoder(nn.Module, ABC, Generic[T])
: This defines theEncoder
class that inherits from three base classes:nn.Module
: A base class for all neural network modules in PyTorch.ABC
: Abstract Base Class, makingEncoder
an abstract class.Generic[T]
: Indicates thatEncoder
is a generic class parameterized byT
.
cfg: T
: This declares a class attributecfg
with typeT
. This attribute will hold some configuration data that can be of any type.variational: bool
: This declares a class attributevariational
that is a boolean indicating whether the encoder is variational or not.
Constructor
def __init__(self, cfg: T, variational: bool) -> None:
super().__init__()
self.cfg = cfg
self.variational = variational
__init__
: This is the constructor method for theEncoder
class.super().__init__()
: Calls the constructor of the parent class (nn.Module
).self.cfg = cfg
: Initializes thecfg
attribute with the providedcfg
argument.self.variational = variational
: Initializes thevariational
attribute with the providedvariational
argument.
Abstract Method forward
@abstractmethod
def forward(
self,
context: BatchedViews,
features: Optional[Float[Tensor, "bv d_in h w"]] = None,
deterministic: bool = False
) -> VariationalGaussians:
pass
@abstractmethod
: Decorator indicating that this method must be implemented by any subclass ofEncoder
.forward
: This is the method that will perform the main computation when the model is called.context: BatchedViews
: The input data, which is expected to be of typeBatchedViews
.features: Optional[Float[Tensor, "bv d_in h w"]]
: An optional tensor input with shape(batch_size, num_views, channels, height, width)
.deterministic: bool = False
: A boolean flag indicating whether the operation should be deterministic (e.g., during inference).-> VariationalGaussians
: The return type of the method isVariationalGaussians
.
Default Data Shim Method
def get_data_shim(self) -> DataShim:
"""The default shim doesn't modify the batch."""
return lambda x: x
get_data_shim
: This method returns a function that does nothing (a no-op). It is likely intended to be overridden by subclasses if they need to modify the data before or after processing.
Property last_layer_weights
@property
@abstractmethod
def last_layer_weights(self) -> Tensor | None:
pass
@property
: Decorator indicating that this method should be treated as a property.@abstractmethod
: Decorator indicating that this method must be implemented by any subclass ofEncoder
.last_layer_weights
: This is a read-only property that returns the weights of the last layer of the encoder.-> Tensor | None
: The return type is either aTensor
orNone
.
Summary
This code defines an abstract base class Encoder
that serves as a template for creating different types of encoders. The Encoder
class is parameterized with a generic type T
, allowing flexibility in the type of configuration data it can handle. The forward
method is abstract and must be implemented by subclasses, providing the core functionality of the encoder. The last_layer_weights
property is also abstract and must be implemented by subclasses to return the weights of the last layer. The get_data_shim
method provides a default no-op implementation that can be overridden by subclasses if needed.
help me understand more about this github repo AE through the following code (explain it such that a fist year comp sci grad student would understand): defaults:
- backbone: dino
name: epipolar
opacity_mapping:
initial: 0.0
final: 0.0
warm_up: 1
num_monocular_samples: 32
num_surfaces: 1
predict_opacity: false
near_disparity: 3.0
gaussians_per_pixel: 3
gaussian_adapter:
gaussian_scale_min: 0.5
gaussian_scale_max: 15.0
color_sh_degree: 4
feature_sh_degree: 2
d_backbone: 512
d_feature: 128
epipolar_transformer:
self_attention:
patch_size: 4
num_octaves: 10
num_layers: 2
num_heads: 4
d_token: 128
d_dot: 128
d_mlp: 256
num_octaves: 10
num_layers: 2
num_heads: 4
num_samples: 32
d_dot: 128
d_mlp: 256
downscale: 4
visualizer:
num_samples: 8
min_resolution: 256
export_ply: false
vis_epipolar_samples: false
vis_epipolar_color_samples: false
vis_gaussians: false
vis_overlaps: false
vis_depth: false
apply_bounds_shim: true
Use this to ablate the epipolar transformer.
use_epipolar_transformer: true
use_transmittance: false