Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
model_name = "Qwen/Qwen3-4B-Instruct-2507" | |
# Load the tokenizer and the model | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype="auto", | |
device_map="auto" | |
) | |
def generate_response(prompt): | |
# Prepare the model input | |
messages = [ | |
{"role": "user", "content": prompt} | |
] | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True, | |
) | |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) | |
# Conduct text completion | |
generated_ids = model.generate( | |
**model_inputs, | |
max_new_tokens=1024 # Reduced for performance and safety | |
) | |
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() | |
content = tokenizer.decode(output_ids, skip_special_tokens=True) | |
return content | |
# Create Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Qwen Chatbot") | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox(label="Input") | |
clear = gr.Button("Clear") | |
def respond(message, chat_history): | |
if not message: | |
return "", chat_history | |
bot_response = generate_response(message) | |
chat_history.append((message, bot_response)) | |
return "", chat_history | |
msg.submit(respond, [msg, chatbot], [msg, chatbot]) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
# Launch the app | |
demo.launch() |