akhaliq's picture
akhaliq HF Staff
Upload app.py with huggingface_hub
2e3fa61 verified
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen3-4B-Instruct-2507"
# Load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
@spaces.GPU(duration=120)
def generate_response(prompt):
# Prepare the model input
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=1024 # Reduced for performance and safety
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
content = tokenizer.decode(output_ids, skip_special_tokens=True)
return content
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Qwen Chatbot")
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Input")
clear = gr.Button("Clear")
def respond(message, chat_history):
if not message:
return "", chat_history
bot_response = generate_response(message)
chat_history.append((message, bot_response))
return "", chat_history
msg.submit(respond, [msg, chatbot], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
# Launch the app
demo.launch()