Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,596 Bytes
2e3fa61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen3-4B-Instruct-2507"
# Load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
@spaces.GPU(duration=120)
def generate_response(prompt):
# Prepare the model input
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=1024 # Reduced for performance and safety
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
content = tokenizer.decode(output_ids, skip_special_tokens=True)
return content
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Qwen Chatbot")
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Input")
clear = gr.Button("Clear")
def respond(message, chat_history):
if not message:
return "", chat_history
bot_response = generate_response(message)
chat_history.append((message, bot_response))
return "", chat_history
msg.submit(respond, [msg, chatbot], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
# Launch the app
demo.launch() |