File size: 15,431 Bytes
763d88e
 
 
 
 
 
 
 
36badcc
 
 
b80e728
f994150
f18255f
36badcc
 
 
 
763d88e
 
 
36badcc
 
 
 
 
 
 
b911552
f18255f
b911552
 
f18255f
f994150
0b49997
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e940c9
0b49997
1e940c9
0b49997
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e940c9
0b49997
b911552
0b49997
 
 
 
 
 
 
 
 
 
 
1e940c9
0b49997
1e940c9
 
 
 
 
0b49997
 
1e940c9
0b49997
 
 
 
 
 
 
36badcc
 
 
763d88e
36badcc
 
763d88e
 
 
 
 
36badcc
b80e728
75dedd6
 
763d88e
 
 
 
 
 
 
36badcc
763d88e
36badcc
 
763d88e
f18255f
 
 
763d88e
f18255f
 
763d88e
10d4684
763d88e
f18255f
763d88e
10d4684
36badcc
763d88e
36badcc
763d88e
 
36badcc
 
 
 
 
 
 
b911552
36badcc
 
 
 
 
b911552
f18255f
e33058f
36badcc
f18255f
36badcc
f18255f
 
 
 
 
b911552
 
 
 
f994150
b911552
 
 
f994150
b911552
e33058f
b911552
f18255f
b911552
 
 
 
 
 
 
 
 
 
 
 
 
f994150
1e940c9
e33058f
f994150
b911552
 
 
 
36badcc
 
 
 
f994150
 
36badcc
 
 
 
 
 
 
 
 
f994150
36badcc
 
f994150
36badcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f994150
 
36badcc
 
 
 
 
 
 
 
 
 
 
 
 
 
f994150
 
 
763d88e
8814906
763d88e
a6fda81
36badcc
b229ffd
36badcc
7736d9a
36badcc
763d88e
 
36badcc
 
 
 
 
 
 
0b49997
b229ffd
f994150
0b49997
f18255f
0b49997
f18255f
f994150
36badcc
 
 
 
 
75d8a47
36badcc
 
763d88e
36badcc
 
 
 
 
 
 
 
 
763d88e
f18255f
36badcc
 
 
 
 
 
 
 
e33058f
f18255f
 
 
 
36badcc
 
 
 
f994150
36badcc
 
f18255f
36badcc
f18255f
 
 
 
 
 
 
36badcc
f18255f
f994150
 
36badcc
 
763d88e
36badcc
 
 
 
 
 
 
763d88e
 
36badcc
 
 
f18255f
36badcc
 
 
763d88e
36badcc
be15f31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# app.py

import gradio as gr
import torch
import torchaudio
from demucs.pretrained import get_model
from demucs.apply import apply_model
import os
import tempfile
import numpy as np
import warnings
import soundfile as sf
import librosa
import time
warnings.filterwarnings("ignore")

# --- Setup the models ---
print("Setting up models...")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")

# Load HT-Demucs model
print("Loading HT-Demucs model...")
htdemucs_model = get_model(name="htdemucs")
htdemucs_model = htdemucs_model.to(device)
htdemucs_model.eval()
print("HT-Demucs model loaded successfully.")

# Setup Spleeter with Python API approach
print("Setting up Spleeter...")
spleeter_separator = None
spleeter_audio_adapter = None
spleeter_available = False

def patch_spleeter_redirects():
    """Patch Spleeter to handle GitHub redirects properly"""
    try:
        import httpx
        from spleeter.model.provider.github import GithubModelProvider
        
        # Store the original download method
        original_download = GithubModelProvider.download
        
        def patched_download(self, name, model_directory):
            """Patched download method that handles redirects"""
            import os
            import tarfile
            import tempfile
            from urllib.parse import urlparse
            
            print(f"Downloading {name} model with redirect handling...")
            
            # Model URLs - only 5stems
            model_urls = {
                '5stems': 'https://github.com/deezer/spleeter/releases/download/v1.4.0/5stems.tar.gz'
            }
            
            if name not in model_urls:
                return original_download(self, name, model_directory)
            
            url = model_urls[name]
            
            try:
                # Create a session that follows redirects
                with httpx.Client(follow_redirects=True, timeout=300) as client:
                    print(f"Downloading from: {url}")
                    response = client.get(url)
                    response.raise_for_status()
                    
                    # Save to temporary file
                    with tempfile.NamedTemporaryFile(delete=False, suffix='.tar.gz') as tmp_file:
                        tmp_file.write(response.content)
                        tmp_file_path = tmp_file.name
                    
                    print(f"Downloaded {len(response.content)} bytes")
                    
                    # Extract the model
                    os.makedirs(model_directory, exist_ok=True)
                    with tarfile.open(tmp_file_path, 'r:gz') as tar:
                        tar.extractall(model_directory)
                    
                    # Clean up
                    os.unlink(tmp_file_path)
                    print(f"βœ… Successfully downloaded and extracted {name} model")
                    
            except Exception as e:
                print(f"❌ Failed to download {name} model: {e}")
                # Fallback to original method
                return original_download(self, name, model_directory)
        
        # Apply the patch
        GithubModelProvider.download = patched_download
        print("βœ… Patched Spleeter to handle GitHub redirects")
        return True
        
    except Exception as e:
        print(f"⚠️ Could not patch Spleeter redirects: {e}")
        return False

def setup_spleeter_with_retry():
    """Setup Spleeter 5stems model only"""
    global spleeter_separator, spleeter_audio_adapter, spleeter_available
    
    try:
        from spleeter.separator import Separator
        from spleeter.audio.adapter import AudioAdapter
        import os
        
        # Patch Spleeter to handle redirects
        patch_spleeter_redirects()
        
        # Set environment variables to help with model download
        os.environ['SPLEETER_MODEL_PATH'] = '/tmp/spleeter_models'
        
        # Create the 5stems separator
        print("Creating Spleeter 5stems separator...")
        spleeter_separator = Separator('spleeter:5stems')
        spleeter_audio_adapter = AudioAdapter.default()
        spleeter_available = True
        print("βœ… Spleeter 5stems model loaded successfully!")
        return True
                
    except Exception as e:
        print(f"❌ Failed to load Spleeter 5stems: {e}")
        spleeter_separator = None
        spleeter_audio_adapter = None
        spleeter_available = False
        return False

# Try to setup Spleeter
setup_spleeter_with_retry()

# --- HT-Demucs separation function ---
def separate_with_htdemucs(audio_path):
    """
    Separates an audio file using HT-Demucs into drums, bass, other, and vocals.
    Returns FILE PATHS.
    """
    if audio_path is None:
        return None, None, None, None, "Please upload an audio file."

    try:
        print(f"HT-Demucs: Loading audio from: {audio_path}")
        
        # Load audio with torchaudio
        wav, sr = torchaudio.load(audio_path)

        if wav.shape[0] == 1:
            print("Audio is mono, converting to stereo.")
            wav = wav.repeat(2, 1)

        wav = wav.to(device)

        print("HT-Demucs: Applying the separation model...")
        with torch.no_grad():
            sources = apply_model(htdemucs_model, wav[None], device=device, progress=True)[0]
        print("HT-Demucs: Separation complete.")

        # Save stems with timestamp to ensure uniqueness
        timestamp = int(time.time() * 1000)  # millisecond timestamp
        output_dir = f"htdemucs_stems_{timestamp}"
        os.makedirs(output_dir, exist_ok=True)
        
        stem_names = ["drums", "bass", "other", "vocals"]

        output_paths = []
        for i, name in enumerate(stem_names):
            out_path = os.path.join(output_dir, f"{name}_{timestamp}.wav")
            torchaudio.save(out_path, sources[i].cpu(), sr)
            output_paths.append(out_path)
            print(f"βœ… HT-Demucs saved {name} to {out_path}")

        return output_paths[0], output_paths[1], output_paths[2], output_paths[3], "βœ… HT-Demucs separation successful!"

    except Exception as e:
        print(f"HT-Demucs Error: {e}")
        return None, None, None, None, f"❌ HT-Demucs Error: {str(e)}"

# --- Spleeter separation function ---
def separate_with_spleeter(audio_path):
    """
    Separates an audio file using Spleeter into vocals, drums, bass, other, and piano.
    Uses Python API approach from stem_separation_spleeter.py
    Returns FILE PATHS.
    """
    if audio_path is None:
        return None, None, None, None, None, "Please upload an audio file."

    if not spleeter_available or spleeter_separator is None or spleeter_audio_adapter is None:
        return None, None, None, None, None, "❌ Spleeter not available. Please install Spleeter."

    try:
        print(f"Spleeter: Processing audio from: {audio_path}")
        
        # Create output directory with timestamp
        timestamp = int(time.time() * 1000)
        output_dir = f"spleeter_stems_{timestamp}"
        os.makedirs(output_dir, exist_ok=True)
        
        # Load audio using Spleeter's audio adapter (from stem_separation_spleeter.py)
        print("Spleeter: Loading audio...")
        waveform, sample_rate = spleeter_audio_adapter.load(audio_path, sample_rate=44100)
        print(f"Spleeter: Loaded audio - shape: {waveform.shape}, sr: {sample_rate}")
        
        # Perform the separation (from stem_separation_spleeter.py)
        print("Spleeter: Separating audio sources...")
        prediction = spleeter_separator.separate(waveform)
        print("Spleeter: Separation complete.")
        print(f"Spleeter: Prediction keys: {list(prediction.keys())}")
        
        # Save stems with timestamp
        output_paths = []
        stem_names = ["vocals", "drums", "bass", "other", "piano"]
        
        for stem_name in stem_names:
            if stem_name in prediction:
                out_path = os.path.join(output_dir, f"{stem_name}_{timestamp}.wav")
                stem_audio = prediction[stem_name]
                
                print(f"Spleeter: {stem_name} audio shape: {stem_audio.shape}, dtype: {stem_audio.dtype}")
                
                # Save using soundfile for better compatibility
                sf.write(out_path, stem_audio, sample_rate)
                output_paths.append(out_path)
                print(f"βœ… Spleeter saved {stem_name} to {out_path}")
            else:
                print(f"⚠️ Warning: {stem_name} not found in prediction")
                output_paths.append(None)
        
        # Ensure we have 5 outputs
        while len(output_paths) < 5:
            output_paths.append(None)

        return output_paths[0], output_paths[1], output_paths[2], output_paths[3], output_paths[4], "βœ… Spleeter separation successful!"

    except Exception as e:
        print(f"Spleeter Error: {e}")
        import traceback
        traceback.print_exc()
        return None, None, None, None, None, f"❌ Spleeter Error: {str(e)}"

# --- Combined separation function ---
def separate_selected_models(audio_path, run_htdemucs, run_spleeter):
    """
    Separates an audio file using selected models (HT-Demucs, Spleeter, or both).
    Returns stems from selected models.
    """
    if audio_path is None:
        return [None] * 11, "Please upload an audio file."

    if not run_htdemucs and not run_spleeter:
        return [None] * 11, "❌ Please select at least one model to run."

    try:
        htdemucs_results = [None] * 5  # 4 stems + 1 status
        spleeter_results = [None] * 6  # 5 stems + 1 status
        status_messages = []
        
        # Run HT-Demucs if selected
        if run_htdemucs:
            print("Running HT-Demucs...")
            htdemucs_results = separate_with_htdemucs(audio_path)
            status_messages.append(htdemucs_results[-1])
        
        # Run Spleeter if selected
        if run_spleeter:
            print("Running Spleeter...")
            spleeter_results = separate_with_spleeter(audio_path)
            status_messages.append(spleeter_results[-1])
        
        # Combine results: HT-Demucs (4 stems) + Spleeter (5 stems)
        all_results = list(htdemucs_results[:-1]) + list(spleeter_results[:-1])
        
        # Create combined status message
        models_used = []
        if run_htdemucs:
            models_used.append("HT-Demucs")
        if run_spleeter:
            models_used.append("Spleeter")
        
        combined_status = f"🎡 {' + '.join(models_used)} completed!\n\n" + "\n".join(status_messages)
        
        return all_results + [combined_status]

    except Exception as e:
        print(f"Combined Error: {e}")
        import traceback
        traceback.print_exc()
        return [None] * 11, f"❌ Error: {str(e)}"

# --- Gradio UI ---
print("Creating Gradio interface...")
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # 🎡 Spleeter & Demucs - Now Both Work!
    
    **Follow me on:** [ Hugging Face @ahk-d](https://huggingface.co/ahk-d) | [ GitHub @ahk-d](https://github.com/ahk-d)
    """)

    with gr.Row():
        with gr.Column(scale=1):
            audio_input = gr.Audio(type="filepath", label="🎡 Upload Your Song")
            
            # Model selection toggles
            gr.Markdown("### πŸŽ›οΈ Select Models to Run")
            with gr.Row():
                htdemucs_toggle = gr.Checkbox(label="🎯 HT-Demucs", value=True, info="Drums, Bass, Other, Vocals")
                spleeter_label = "🎡 Spleeter 2025 (5stems)" if spleeter_available else "🎡 Spleeter 2025"
                spleeter_info = "Vocals, Drums, Bass, Other, Piano" if spleeter_available else "5stems model not available"
                spleeter_toggle = gr.Checkbox(
                    label=spleeter_label, 
                    value=spleeter_available, 
                    info=spleeter_info,
                    interactive=spleeter_available
                )
            
            separate_button = gr.Button("πŸš€ Separate Music", variant="primary", size="lg")
            status_output = gr.Textbox(label="πŸ“Š Status", interactive=False, lines=4)

    gr.Markdown("---")

    with gr.Row():
        # HT-Demucs Results
        with gr.Column():
            gr.Markdown("### 🎯 HT-Demucs Results")
            with gr.Row():
                htdemucs_drums = gr.Audio(label="πŸ₯ Drums", type="filepath")
                htdemucs_bass = gr.Audio(label="🎸 Bass", type="filepath")
            with gr.Row():
                htdemucs_other = gr.Audio(label="🎼 Other", type="filepath")
                htdemucs_vocals = gr.Audio(label="🎀 Vocals", type="filepath")
        
        # Spleeter Results
        with gr.Column():
            gr.Markdown("### 🎡 Spleeter 2025 Results")
            with gr.Row():
                spleeter_vocals = gr.Audio(label="🎀 Vocals", type="filepath")
                spleeter_drums = gr.Audio(label="πŸ₯ Drums", type="filepath")
            with gr.Row():
                spleeter_bass = gr.Audio(label="🎸 Bass", type="filepath")
                spleeter_other = gr.Audio(label="🎼 Other", type="filepath")
            with gr.Row():
                spleeter_piano = gr.Audio(label="🎹 Piano", type="filepath")
            
            if spleeter_available:
                gr.Markdown("*5stems model: Vocals, Drums, Bass, Other, Piano*")
            else:
                gr.Markdown("*Note: Spleeter 5stems model not available*")

    gr.Markdown("---")
    
    with gr.Row():
        comparison_text = f"""
        ### πŸ“‹ Model Comparison
        
        | Feature | HT-Demucs | Spleeter 2025 (5stems) |
        |---------|-----------|----------|
        | **Vocals** | βœ… High Quality | {'βœ… Available' if spleeter_available else '❌ N/A'} |
        | **Drums** | βœ… High Quality | {'βœ… Available' if spleeter_available else '❌ N/A'} |
        | **Bass** | βœ… High Quality | {'βœ… Available' if spleeter_available else '❌ N/A'} |
        | **Other** | βœ… High Quality | {'βœ… Available' if spleeter_available else '❌ N/A'} |
        | **Piano** | ❌ Not Available | {'βœ… **Available**' if spleeter_available else '❌ N/A'} |
        | **Speed** | ⚑ Fast | {'⚑ Fast' if spleeter_available else '❌ N/A'} |
        | **Quality** | πŸ† Excellent | {'πŸ† Good' if spleeter_available else '❌ N/A'} |
        
        **πŸ’‘ Tip:** Use Spleeter 2025 for piano separation, HT-Demucs for other instruments!
        """
        gr.Markdown(comparison_text)

    # Connect the button to the combined function
    separate_button.click(
        fn=separate_selected_models,
        inputs=[audio_input, htdemucs_toggle, spleeter_toggle],
        outputs=[
            htdemucs_drums, htdemucs_bass, htdemucs_other, htdemucs_vocals,  # HT-Demucs outputs
            spleeter_vocals, spleeter_drums, spleeter_bass, spleeter_other, spleeter_piano,  # Spleeter outputs
            status_output  # Status output
        ]
    )

    gr.Markdown("""
    ---
    <p style='text-align: center; font-size: small;'>
    πŸš€ Powered by <strong>HT-Demucs</strong> & <strong>Spleeter 2025</strong> | 
    🎡 Compare and choose your best stems!
    </p>
    """)

if __name__ == "__main__":
    demo.launch(share=True)