test spleeter
Browse files- app.py +106 -176
- requirements.txt +2 -4
app.py
CHANGED
|
@@ -8,13 +8,11 @@ from demucs.apply import apply_model
|
|
| 8 |
import os
|
| 9 |
import tempfile
|
| 10 |
import numpy as np
|
| 11 |
-
from spleeter.separator import Separator
|
| 12 |
-
from spleeter.audio.adapter import AudioAdapter
|
| 13 |
import warnings
|
| 14 |
import soundfile as sf
|
| 15 |
import librosa
|
| 16 |
-
import
|
| 17 |
-
import
|
| 18 |
import shutil
|
| 19 |
warnings.filterwarnings("ignore")
|
| 20 |
|
|
@@ -30,73 +28,29 @@ htdemucs_model = htdemucs_model.to(device)
|
|
| 30 |
htdemucs_model.eval()
|
| 31 |
print("HT-Demucs model loaded successfully.")
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
print("
|
| 35 |
-
|
| 36 |
-
spleeter_audio_adapter = None
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
os.environ['SPLEETER_MODEL_PATH'] = '/tmp/spleeter_models'
|
| 41 |
-
os.makedirs('/tmp/spleeter_models', exist_ok=True)
|
| 42 |
-
|
| 43 |
-
# Try different approaches to handle the redirect issue
|
| 44 |
-
import ssl
|
| 45 |
-
import urllib.request
|
| 46 |
-
import urllib3
|
| 47 |
-
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
|
| 48 |
-
|
| 49 |
-
# Create unverified SSL context to handle redirects
|
| 50 |
-
ssl._create_default_https_context = ssl._create_unverified_context
|
| 51 |
-
|
| 52 |
try:
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
stft_backend='tensorflow'
|
| 70 |
-
)
|
| 71 |
-
spleeter_model_type = "2stems"
|
| 72 |
-
print("Spleeter: Using 2stems model (vocals, accompaniment)")
|
| 73 |
-
except Exception as e2:
|
| 74 |
-
print(f"2stems model also failed: {e2}")
|
| 75 |
-
try:
|
| 76 |
-
print("Attempting to load 2stems-16kHz model...")
|
| 77 |
-
spleeter_separator = Separator(
|
| 78 |
-
'spleeter:2stems-16kHz',
|
| 79 |
-
multiprocess=False,
|
| 80 |
-
stft_backend='tensorflow'
|
| 81 |
-
)
|
| 82 |
-
spleeter_model_type = "2stems-16kHz"
|
| 83 |
-
print("Spleeter: Using 2stems-16kHz model")
|
| 84 |
-
except Exception as e3:
|
| 85 |
-
print(f"All Spleeter models failed: {e3}")
|
| 86 |
-
spleeter_separator = None
|
| 87 |
-
spleeter_model_type = None
|
| 88 |
-
|
| 89 |
-
if spleeter_separator is not None:
|
| 90 |
-
spleeter_audio_adapter = AudioAdapter.default()
|
| 91 |
-
print("Spleeter model loaded successfully.")
|
| 92 |
-
else:
|
| 93 |
-
print("Spleeter will be disabled for this session.")
|
| 94 |
-
|
| 95 |
-
except Exception as e:
|
| 96 |
-
print(f"Spleeter initialization failed: {e}")
|
| 97 |
-
spleeter_separator = None
|
| 98 |
-
spleeter_audio_adapter = None
|
| 99 |
-
spleeter_model_type = None
|
| 100 |
|
| 101 |
# --- HT-Demucs separation function ---
|
| 102 |
def separate_with_htdemucs(audio_path):
|
|
@@ -124,14 +78,16 @@ def separate_with_htdemucs(audio_path):
|
|
| 124 |
sources = apply_model(htdemucs_model, wav[None], device=device, progress=True)[0]
|
| 125 |
print("HT-Demucs: Separation complete.")
|
| 126 |
|
| 127 |
-
# Save stems
|
| 128 |
-
|
| 129 |
-
output_dir = "
|
| 130 |
os.makedirs(output_dir, exist_ok=True)
|
|
|
|
|
|
|
| 131 |
|
| 132 |
output_paths = []
|
| 133 |
for i, name in enumerate(stem_names):
|
| 134 |
-
out_path = os.path.join(output_dir, f"{name}.wav")
|
| 135 |
torchaudio.save(out_path, sources[i].cpu(), sr)
|
| 136 |
output_paths.append(out_path)
|
| 137 |
print(f"β
HT-Demucs saved {name} to {out_path}")
|
|
@@ -146,103 +102,79 @@ def separate_with_htdemucs(audio_path):
|
|
| 146 |
def separate_with_spleeter(audio_path):
|
| 147 |
"""
|
| 148 |
Separates an audio file using Spleeter into vocals, drums, bass, other, and piano.
|
|
|
|
| 149 |
Returns FILE PATHS.
|
| 150 |
"""
|
| 151 |
if audio_path is None:
|
| 152 |
return None, None, None, None, None, "Please upload an audio file."
|
| 153 |
|
| 154 |
-
if
|
| 155 |
-
return None, None, None, None, None, "β Spleeter
|
| 156 |
|
| 157 |
try:
|
| 158 |
-
print(f"Spleeter:
|
| 159 |
|
| 160 |
-
#
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
if waveform.shape[0] == 1:
|
| 180 |
-
waveform = np.vstack([waveform, waveform])
|
| 181 |
-
elif waveform.shape[0] > 2:
|
| 182 |
-
# Take first two channels if more than stereo
|
| 183 |
-
waveform = waveform[:2, :]
|
| 184 |
-
|
| 185 |
-
print(f"Spleeter: Final waveform shape: {waveform.shape}")
|
| 186 |
-
|
| 187 |
-
# Transpose to (samples, channels) format for Spleeter
|
| 188 |
-
waveform_for_spleeter = waveform.T
|
| 189 |
-
print(f"Spleeter: Transposed for separation - shape: {waveform_for_spleeter.shape}")
|
| 190 |
-
|
| 191 |
-
except Exception as load_error:
|
| 192 |
-
print(f"Librosa loading failed: {load_error}")
|
| 193 |
-
# Fallback to spleeter's audio adapter
|
| 194 |
-
waveform_for_spleeter, sample_rate = spleeter_audio_adapter.load(audio_path)
|
| 195 |
-
print(f"Spleeter (adapter): Loaded audio - shape: {waveform_for_spleeter.shape}, sr: {sample_rate}")
|
| 196 |
|
| 197 |
-
print("Spleeter: Applying the separation model...")
|
| 198 |
-
# Use the waveform directly with Spleeter
|
| 199 |
-
prediction = spleeter_separator.separate(waveform_for_spleeter)
|
| 200 |
print("Spleeter: Separation complete.")
|
| 201 |
-
print(f"Spleeter: Prediction keys: {list(prediction.keys())}")
|
| 202 |
-
|
| 203 |
-
# Save stems temporarily
|
| 204 |
-
output_dir = "spleeter_stems"
|
| 205 |
-
os.makedirs(output_dir, exist_ok=True)
|
| 206 |
-
|
| 207 |
-
output_paths = []
|
| 208 |
|
| 209 |
-
#
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
else:
|
| 214 |
-
# 2stems model
|
| 215 |
-
stem_names = ["vocals", "accompaniment", None, None, None]
|
| 216 |
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
|
|
|
|
|
|
| 237 |
else:
|
|
|
|
| 238 |
output_paths.append(None)
|
| 239 |
|
| 240 |
-
#
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
return output_paths[0], output_paths[1], output_paths[2], output_paths[3], output_paths[4], "β
Spleeter separation successful!"
|
| 245 |
|
|
|
|
|
|
|
| 246 |
except Exception as e:
|
| 247 |
print(f"Spleeter Error: {e}")
|
| 248 |
import traceback
|
|
@@ -302,12 +234,12 @@ def separate_selected_models(audio_path, run_htdemucs, run_spleeter):
|
|
| 302 |
print("Creating Gradio interface...")
|
| 303 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 304 |
gr.Markdown("""
|
| 305 |
-
# π΅ Music Stem Separator - HT-Demucs & Spleeter
|
| 306 |
|
| 307 |
Upload your music and get stems from both **HT-Demucs** and **Spleeter** models!
|
| 308 |
|
| 309 |
**HT-Demucs** provides: Drums, Bass, Other, Vocals
|
| 310 |
-
**Spleeter** provides: Vocals, Drums, Bass, Other, **Piano** πΉ (5stems model)
|
| 311 |
|
| 312 |
Compare the quality and choose the best stems for your needs!
|
| 313 |
""")
|
|
@@ -320,12 +252,11 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 320 |
gr.Markdown("### ποΈ Select Models to Run")
|
| 321 |
with gr.Row():
|
| 322 |
htdemucs_toggle = gr.Checkbox(label="π― HT-Demucs", value=True, info="Drums, Bass, Other, Vocals")
|
| 323 |
-
spleeter_enabled = spleeter_separator is not None
|
| 324 |
spleeter_toggle = gr.Checkbox(
|
| 325 |
-
label="π΅ Spleeter",
|
| 326 |
-
value=
|
| 327 |
-
info=
|
| 328 |
-
interactive=
|
| 329 |
)
|
| 330 |
|
| 331 |
separate_button = gr.Button("π Separate Music", variant="primary", size="lg")
|
|
@@ -346,7 +277,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 346 |
|
| 347 |
# Spleeter Results
|
| 348 |
with gr.Column():
|
| 349 |
-
gr.Markdown("### π΅ Spleeter Results")
|
| 350 |
with gr.Row():
|
| 351 |
spleeter_vocals = gr.Audio(label="π€ Vocals", type="filepath")
|
| 352 |
spleeter_drums = gr.Audio(label="π₯ Drums", type="filepath")
|
|
@@ -356,10 +287,10 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 356 |
with gr.Row():
|
| 357 |
spleeter_piano = gr.Audio(label="πΉ Piano", type="filepath")
|
| 358 |
|
| 359 |
-
if
|
| 360 |
-
gr.Markdown("*
|
| 361 |
-
|
| 362 |
-
gr.Markdown("*Note: Spleeter model not available*")
|
| 363 |
|
| 364 |
gr.Markdown("---")
|
| 365 |
|
|
@@ -367,18 +298,17 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 367 |
comparison_text = f"""
|
| 368 |
### π Model Comparison
|
| 369 |
|
| 370 |
-
| Feature | HT-Demucs | Spleeter (
|
| 371 |
|---------|-----------|----------|
|
| 372 |
-
| **Vocals** | β
High Quality | {'β
Available' if
|
| 373 |
-
| **Drums** | β
High Quality | {'β
Available' if
|
| 374 |
-
| **Bass** | β
High Quality | {'β
Available' if
|
| 375 |
-
| **Other** | β
High Quality | {'β
Available' if
|
| 376 |
-
| **Piano** | β Not Available | {'β
Available' if
|
| 377 |
-
| **
|
| 378 |
-
| **
|
| 379 |
-
| **Quality** | π Excellent | {'π Good' if spleeter_enabled else 'β N/A'} |
|
| 380 |
|
| 381 |
-
**π‘ Tip:** Use Spleeter
|
| 382 |
"""
|
| 383 |
gr.Markdown(comparison_text)
|
| 384 |
|
|
@@ -396,7 +326,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 396 |
gr.Markdown("""
|
| 397 |
---
|
| 398 |
<p style='text-align: center; font-size: small;'>
|
| 399 |
-
π Powered by <strong>HT-Demucs</strong> & <strong>Spleeter</strong> |
|
| 400 |
π΅ Compare and choose your best stems!
|
| 401 |
</p>
|
| 402 |
""")
|
|
|
|
| 8 |
import os
|
| 9 |
import tempfile
|
| 10 |
import numpy as np
|
|
|
|
|
|
|
| 11 |
import warnings
|
| 12 |
import soundfile as sf
|
| 13 |
import librosa
|
| 14 |
+
import time
|
| 15 |
+
import subprocess
|
| 16 |
import shutil
|
| 17 |
warnings.filterwarnings("ignore")
|
| 18 |
|
|
|
|
| 28 |
htdemucs_model.eval()
|
| 29 |
print("HT-Demucs model loaded successfully.")
|
| 30 |
|
| 31 |
+
# Setup Spleeter with command-line approach
|
| 32 |
+
print("Setting up Spleeter...")
|
| 33 |
+
spleeter_available = False
|
|
|
|
| 34 |
|
| 35 |
+
def check_spleeter_installation():
|
| 36 |
+
"""Check if Spleeter is installed and available via command line"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
try:
|
| 38 |
+
result = subprocess.run(['spleeter', '--help'],
|
| 39 |
+
capture_output=True, text=True, timeout=10)
|
| 40 |
+
if result.returncode == 0:
|
| 41 |
+
print("β
Spleeter command-line tool is available!")
|
| 42 |
+
return True
|
| 43 |
+
else:
|
| 44 |
+
print(f"β Spleeter command failed: {result.stderr}")
|
| 45 |
+
return False
|
| 46 |
+
except FileNotFoundError:
|
| 47 |
+
print("β Spleeter command not found. Please install Spleeter.")
|
| 48 |
+
return False
|
| 49 |
+
except Exception as e:
|
| 50 |
+
print(f"β Error checking Spleeter: {e}")
|
| 51 |
+
return False
|
| 52 |
+
|
| 53 |
+
spleeter_available = check_spleeter_installation()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
# --- HT-Demucs separation function ---
|
| 56 |
def separate_with_htdemucs(audio_path):
|
|
|
|
| 78 |
sources = apply_model(htdemucs_model, wav[None], device=device, progress=True)[0]
|
| 79 |
print("HT-Demucs: Separation complete.")
|
| 80 |
|
| 81 |
+
# Save stems with timestamp to ensure uniqueness
|
| 82 |
+
timestamp = int(time.time() * 1000) # millisecond timestamp
|
| 83 |
+
output_dir = f"htdemucs_stems_{timestamp}"
|
| 84 |
os.makedirs(output_dir, exist_ok=True)
|
| 85 |
+
|
| 86 |
+
stem_names = ["drums", "bass", "other", "vocals"]
|
| 87 |
|
| 88 |
output_paths = []
|
| 89 |
for i, name in enumerate(stem_names):
|
| 90 |
+
out_path = os.path.join(output_dir, f"{name}_{timestamp}.wav")
|
| 91 |
torchaudio.save(out_path, sources[i].cpu(), sr)
|
| 92 |
output_paths.append(out_path)
|
| 93 |
print(f"β
HT-Demucs saved {name} to {out_path}")
|
|
|
|
| 102 |
def separate_with_spleeter(audio_path):
|
| 103 |
"""
|
| 104 |
Separates an audio file using Spleeter into vocals, drums, bass, other, and piano.
|
| 105 |
+
Uses command-line execution for reliability.
|
| 106 |
Returns FILE PATHS.
|
| 107 |
"""
|
| 108 |
if audio_path is None:
|
| 109 |
return None, None, None, None, None, "Please upload an audio file."
|
| 110 |
|
| 111 |
+
if not spleeter_available:
|
| 112 |
+
return None, None, None, None, None, "β Spleeter not available. Please install Spleeter."
|
| 113 |
|
| 114 |
try:
|
| 115 |
+
print(f"Spleeter: Processing audio from: {audio_path}")
|
| 116 |
|
| 117 |
+
# Create output directory with timestamp
|
| 118 |
+
timestamp = int(time.time() * 1000)
|
| 119 |
+
output_dir = f"spleeter_stems_{timestamp}"
|
| 120 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 121 |
+
|
| 122 |
+
# Run Spleeter command-line tool
|
| 123 |
+
cmd = [
|
| 124 |
+
'spleeter', 'separate',
|
| 125 |
+
'-i', audio_path,
|
| 126 |
+
'-o', output_dir,
|
| 127 |
+
'-p', 'spleeter:5stems-16kHz'
|
| 128 |
+
]
|
| 129 |
+
|
| 130 |
+
print(f"Spleeter: Running command: {' '.join(cmd)}")
|
| 131 |
+
result = subprocess.run(cmd, capture_output=True, text=True, timeout=300)
|
| 132 |
+
|
| 133 |
+
if result.returncode != 0:
|
| 134 |
+
print(f"Spleeter command failed: {result.stderr}")
|
| 135 |
+
return None, None, None, None, None, f"β Spleeter command failed: {result.stderr}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
|
|
|
|
|
|
|
|
|
| 137 |
print("Spleeter: Separation complete.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
+
# Find the separated files
|
| 140 |
+
# Spleeter creates a subdirectory with the input filename
|
| 141 |
+
input_filename = os.path.splitext(os.path.basename(audio_path))[0]
|
| 142 |
+
spleeter_output_dir = os.path.join(output_dir, input_filename)
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
+
if not os.path.exists(spleeter_output_dir):
|
| 145 |
+
print(f"Expected output directory not found: {spleeter_output_dir}")
|
| 146 |
+
return None, None, None, None, None, "β Spleeter output directory not found"
|
| 147 |
+
|
| 148 |
+
# Map Spleeter output files to our expected order
|
| 149 |
+
stem_mapping = {
|
| 150 |
+
"vocals": "vocals.wav",
|
| 151 |
+
"drums": "drums.wav",
|
| 152 |
+
"bass": "bass.wav",
|
| 153 |
+
"other": "other.wav",
|
| 154 |
+
"piano": "piano.wav"
|
| 155 |
+
}
|
| 156 |
+
|
| 157 |
+
output_paths = []
|
| 158 |
+
for stem_name, filename in stem_mapping.items():
|
| 159 |
+
source_path = os.path.join(spleeter_output_dir, filename)
|
| 160 |
+
if os.path.exists(source_path):
|
| 161 |
+
# Copy to our timestamped directory for consistency
|
| 162 |
+
dest_path = os.path.join(output_dir, f"{stem_name}_{timestamp}.wav")
|
| 163 |
+
shutil.copy2(source_path, dest_path)
|
| 164 |
+
output_paths.append(dest_path)
|
| 165 |
+
print(f"β
Spleeter saved {stem_name} to {dest_path}")
|
| 166 |
else:
|
| 167 |
+
print(f"β οΈ Warning: {stem_name} file not found: {source_path}")
|
| 168 |
output_paths.append(None)
|
| 169 |
|
| 170 |
+
# Clean up the intermediate directory
|
| 171 |
+
if os.path.exists(spleeter_output_dir):
|
| 172 |
+
shutil.rmtree(spleeter_output_dir)
|
| 173 |
+
|
| 174 |
return output_paths[0], output_paths[1], output_paths[2], output_paths[3], output_paths[4], "β
Spleeter separation successful!"
|
| 175 |
|
| 176 |
+
except subprocess.TimeoutExpired:
|
| 177 |
+
return None, None, None, None, None, "β Spleeter separation timed out (5 minutes)"
|
| 178 |
except Exception as e:
|
| 179 |
print(f"Spleeter Error: {e}")
|
| 180 |
import traceback
|
|
|
|
| 234 |
print("Creating Gradio interface...")
|
| 235 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 236 |
gr.Markdown("""
|
| 237 |
+
# π΅ Music Stem Separator - HT-Demucs & Spleeter 2025
|
| 238 |
|
| 239 |
Upload your music and get stems from both **HT-Demucs** and **Spleeter** models!
|
| 240 |
|
| 241 |
**HT-Demucs** provides: Drums, Bass, Other, Vocals
|
| 242 |
+
**Spleeter 2025** provides: Vocals, Drums, Bass, Other, **Piano** πΉ (5stems model)
|
| 243 |
|
| 244 |
Compare the quality and choose the best stems for your needs!
|
| 245 |
""")
|
|
|
|
| 252 |
gr.Markdown("### ποΈ Select Models to Run")
|
| 253 |
with gr.Row():
|
| 254 |
htdemucs_toggle = gr.Checkbox(label="π― HT-Demucs", value=True, info="Drums, Bass, Other, Vocals")
|
|
|
|
| 255 |
spleeter_toggle = gr.Checkbox(
|
| 256 |
+
label="π΅ Spleeter 2025 (5stems)",
|
| 257 |
+
value=spleeter_available,
|
| 258 |
+
info="Vocals, Drums, Bass, Other, Piano" if spleeter_available else "Not available",
|
| 259 |
+
interactive=spleeter_available
|
| 260 |
)
|
| 261 |
|
| 262 |
separate_button = gr.Button("π Separate Music", variant="primary", size="lg")
|
|
|
|
| 277 |
|
| 278 |
# Spleeter Results
|
| 279 |
with gr.Column():
|
| 280 |
+
gr.Markdown("### π΅ Spleeter 2025 Results")
|
| 281 |
with gr.Row():
|
| 282 |
spleeter_vocals = gr.Audio(label="π€ Vocals", type="filepath")
|
| 283 |
spleeter_drums = gr.Audio(label="π₯ Drums", type="filepath")
|
|
|
|
| 287 |
with gr.Row():
|
| 288 |
spleeter_piano = gr.Audio(label="πΉ Piano", type="filepath")
|
| 289 |
|
| 290 |
+
if spleeter_available:
|
| 291 |
+
gr.Markdown("*5stems model: Vocals, Drums, Bass, Other, Piano*")
|
| 292 |
+
else:
|
| 293 |
+
gr.Markdown("*Note: Spleeter 5stems model not available*")
|
| 294 |
|
| 295 |
gr.Markdown("---")
|
| 296 |
|
|
|
|
| 298 |
comparison_text = f"""
|
| 299 |
### π Model Comparison
|
| 300 |
|
| 301 |
+
| Feature | HT-Demucs | Spleeter 2025 (5stems) |
|
| 302 |
|---------|-----------|----------|
|
| 303 |
+
| **Vocals** | β
High Quality | {'β
Available' if spleeter_available else 'β N/A'} |
|
| 304 |
+
| **Drums** | β
High Quality | {'β
Available' if spleeter_available else 'β N/A'} |
|
| 305 |
+
| **Bass** | β
High Quality | {'β
Available' if spleeter_available else 'β N/A'} |
|
| 306 |
+
| **Other** | β
High Quality | {'β
Available' if spleeter_available else 'β N/A'} |
|
| 307 |
+
| **Piano** | β Not Available | {'β
**Available**' if spleeter_available else 'β N/A'} |
|
| 308 |
+
| **Speed** | β‘ Fast | {'β‘ Fast' if spleeter_available else 'β N/A'} |
|
| 309 |
+
| **Quality** | π Excellent | {'π Good' if spleeter_available else 'β N/A'} |
|
|
|
|
| 310 |
|
| 311 |
+
**π‘ Tip:** Use Spleeter 2025 for piano separation, HT-Demucs for other instruments!
|
| 312 |
"""
|
| 313 |
gr.Markdown(comparison_text)
|
| 314 |
|
|
|
|
| 326 |
gr.Markdown("""
|
| 327 |
---
|
| 328 |
<p style='text-align: center; font-size: small;'>
|
| 329 |
+
π Powered by <strong>HT-Demucs</strong> & <strong>Spleeter 2025</strong> |
|
| 330 |
π΅ Compare and choose your best stems!
|
| 331 |
</p>
|
| 332 |
""")
|
requirements.txt
CHANGED
|
@@ -3,9 +3,7 @@ spleeter==2.3.2
|
|
| 3 |
tensorflow==2.13.0
|
| 4 |
torch
|
| 5 |
torchaudio
|
| 6 |
-
gradio==
|
| 7 |
numpy>=1.21.0
|
| 8 |
soundfile
|
| 9 |
-
|
| 10 |
-
llvmlite==0.38.1
|
| 11 |
-
# Use compatible numba and llvmlite versions for Spleeter
|
|
|
|
| 3 |
tensorflow==2.13.0
|
| 4 |
torch
|
| 5 |
torchaudio
|
| 6 |
+
gradio==4.44.0
|
| 7 |
numpy>=1.21.0
|
| 8 |
soundfile
|
| 9 |
+
librosa
|
|
|
|
|
|