|
from __future__ import annotations |
|
|
|
import json |
|
import logging |
|
import uuid |
|
from operator import itemgetter |
|
from typing import ( |
|
Any, |
|
AsyncContextManager, |
|
AsyncIterator, |
|
Callable, |
|
Dict, |
|
Iterator, |
|
List, |
|
Literal, |
|
Optional, |
|
Sequence, |
|
Tuple, |
|
Type, |
|
Union, |
|
cast, |
|
) |
|
|
|
import httpx |
|
from httpx_sse import EventSource, aconnect_sse, connect_sse |
|
from langchain_core.callbacks import ( |
|
AsyncCallbackManagerForLLMRun, |
|
CallbackManagerForLLMRun, |
|
) |
|
from langchain_core.language_models import LanguageModelInput |
|
from langchain_core.language_models.chat_models import ( |
|
BaseChatModel, |
|
|
|
agenerate_from_stream, |
|
generate_from_stream, |
|
) |
|
from langchain_core.language_models.llms import create_base_retry_decorator |
|
from langchain_core.messages import ( |
|
AIMessage, |
|
AIMessageChunk, |
|
BaseMessage, |
|
BaseMessageChunk, |
|
ChatMessage, |
|
ChatMessageChunk, |
|
HumanMessage, |
|
HumanMessageChunk, |
|
InvalidToolCall, |
|
SystemMessage, |
|
SystemMessageChunk, |
|
ToolCall, |
|
ToolMessage, |
|
) |
|
from langchain_core.output_parsers import ( |
|
JsonOutputParser, |
|
PydanticOutputParser, |
|
) |
|
from langchain_core.output_parsers.base import OutputParserLike |
|
from langchain_core.output_parsers.openai_tools import ( |
|
JsonOutputKeyToolsParser, |
|
PydanticToolsParser, |
|
make_invalid_tool_call, |
|
parse_tool_call, |
|
) |
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult |
|
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator |
|
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough |
|
from langchain_core.tools import BaseTool |
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env |
|
from langchain_core.utils.function_calling import convert_to_openai_tool |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def _create_retry_decorator( |
|
llm: ChatMistralAI, |
|
run_manager: Optional[ |
|
Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun] |
|
] = None, |
|
) -> Callable[[Any], Any]: |
|
"""Returns a tenacity retry decorator, preconfigured to handle exceptions""" |
|
|
|
errors = [httpx.RequestError, httpx.StreamError] |
|
return create_base_retry_decorator( |
|
error_types=errors, max_retries=llm.max_retries, run_manager=run_manager |
|
) |
|
|
|
|
|
def _convert_mistral_chat_message_to_message( |
|
_message: Dict, |
|
) -> BaseMessage: |
|
role = _message["role"] |
|
assert role == "assistant", f"Expected role to be 'assistant', got {role}" |
|
content = cast(str, _message["content"]) |
|
|
|
additional_kwargs: Dict = {} |
|
tool_calls = [] |
|
invalid_tool_calls = [] |
|
if raw_tool_calls := _message.get("tool_calls"): |
|
additional_kwargs["tool_calls"] = raw_tool_calls |
|
for raw_tool_call in raw_tool_calls: |
|
try: |
|
parsed: dict = cast( |
|
dict, parse_tool_call(raw_tool_call, return_id=True) |
|
) |
|
if not parsed["id"]: |
|
tool_call_id = uuid.uuid4().hex[:] |
|
tool_calls.append( |
|
{ |
|
**parsed, |
|
**{"id": tool_call_id}, |
|
}, |
|
) |
|
else: |
|
tool_calls.append(parsed) |
|
except Exception as e: |
|
invalid_tool_calls.append( |
|
dict(make_invalid_tool_call(raw_tool_call, str(e))) |
|
) |
|
return AIMessage( |
|
content=content, |
|
additional_kwargs=additional_kwargs, |
|
tool_calls=tool_calls, |
|
invalid_tool_calls=invalid_tool_calls, |
|
) |
|
|
|
|
|
def _raise_on_error(response: httpx.Response) -> None: |
|
"""Raise an error if the response is an error.""" |
|
if httpx.codes.is_error(response.status_code): |
|
error_message = response.read().decode("utf-8") |
|
raise httpx.HTTPStatusError( |
|
f"Error response {response.status_code} " |
|
f"while fetching {response.url}: {error_message}", |
|
request=response.request, |
|
response=response, |
|
) |
|
|
|
|
|
async def _araise_on_error(response: httpx.Response) -> None: |
|
"""Raise an error if the response is an error.""" |
|
if httpx.codes.is_error(response.status_code): |
|
error_message = (await response.aread()).decode("utf-8") |
|
raise httpx.HTTPStatusError( |
|
f"Error response {response.status_code} " |
|
f"while fetching {response.url}: {error_message}", |
|
request=response.request, |
|
response=response, |
|
) |
|
|
|
|
|
async def _aiter_sse( |
|
event_source_mgr: AsyncContextManager[EventSource], |
|
) -> AsyncIterator[Dict]: |
|
"""Iterate over the server-sent events.""" |
|
async with event_source_mgr as event_source: |
|
await _araise_on_error(event_source.response) |
|
async for event in event_source.aiter_sse(): |
|
if event.data == "[DONE]": |
|
return |
|
yield event.json() |
|
|
|
|
|
async def acompletion_with_retry( |
|
llm: ChatMistralAI, |
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, |
|
**kwargs: Any, |
|
) -> Any: |
|
"""Use tenacity to retry the async completion call.""" |
|
retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) |
|
|
|
@retry_decorator |
|
async def _completion_with_retry(**kwargs: Any) -> Any: |
|
if "stream" not in kwargs: |
|
kwargs["stream"] = False |
|
stream = kwargs["stream"] |
|
if stream: |
|
event_source = aconnect_sse( |
|
llm.async_client, "POST", "/chat/completions", json=kwargs |
|
) |
|
return _aiter_sse(event_source) |
|
else: |
|
response = await llm.async_client.post(url="/chat/completions", json=kwargs) |
|
await _araise_on_error(response) |
|
return response.json() |
|
|
|
return await _completion_with_retry(**kwargs) |
|
|
|
|
|
def _convert_delta_to_message_chunk( |
|
_delta: Dict, default_class: Type[BaseMessageChunk] |
|
) -> BaseMessageChunk: |
|
role = _delta.get("role") |
|
content = _delta.get("content") or "" |
|
if role == "user" or default_class == HumanMessageChunk: |
|
return HumanMessageChunk(content=content) |
|
elif role == "assistant" or default_class == AIMessageChunk: |
|
additional_kwargs: Dict = {} |
|
|
|
raw_tool_calls = _delta.get("tool_calls") |
|
tool_call_chunks = [] |
|
|
|
|
|
if raw_tool_calls and _delta['tool_calls'][-1]['function']['name'] == 'JSON': |
|
content = _delta['tool_calls'][-1]['function']['arguments'] |
|
elif raw_tool_calls: |
|
additional_kwargs["tool_calls"] = raw_tool_calls |
|
try: |
|
tool_call_chunks = [] |
|
for raw_tool_call in raw_tool_calls: |
|
if not raw_tool_call.get("index") and not raw_tool_call.get("id"): |
|
tool_call_id = uuid.uuid4().hex[:] |
|
else: |
|
tool_call_id = raw_tool_call.get("id") |
|
tool_call_chunks.append( |
|
{ |
|
"name": raw_tool_call["function"].get("name"), |
|
"args": raw_tool_call["function"].get("arguments"), |
|
"id": tool_call_id, |
|
"index": raw_tool_call.get("index"), |
|
} |
|
) |
|
except KeyError: |
|
pass |
|
return AIMessageChunk( |
|
content=content, |
|
additional_kwargs=additional_kwargs, |
|
tool_call_chunks=tool_call_chunks, |
|
) |
|
elif role == "system" or default_class == SystemMessageChunk: |
|
return SystemMessageChunk(content=content) |
|
elif role or default_class == ChatMessageChunk: |
|
return ChatMessageChunk(content=content, role=role) |
|
else: |
|
return default_class(content=content) |
|
|
|
|
|
def _format_tool_call_for_mistral(tool_call: ToolCall) -> dict: |
|
"""Format Langchain ToolCall to dict expected by Mistral.""" |
|
result: Dict[str, Any] = { |
|
"function": { |
|
"name": tool_call["name"], |
|
"arguments": json.dumps(tool_call["args"]), |
|
} |
|
} |
|
if _id := tool_call.get("id"): |
|
result["id"] = _id |
|
|
|
return result |
|
|
|
|
|
def _format_invalid_tool_call_for_mistral(invalid_tool_call: InvalidToolCall) -> dict: |
|
"""Format Langchain InvalidToolCall to dict expected by Mistral.""" |
|
result: Dict[str, Any] = { |
|
"function": { |
|
"name": invalid_tool_call["name"], |
|
"arguments": invalid_tool_call["args"], |
|
} |
|
} |
|
if _id := invalid_tool_call.get("id"): |
|
result["id"] = _id |
|
|
|
return result |
|
|
|
|
|
def _convert_message_to_mistral_chat_message( |
|
message: BaseMessage, |
|
) -> Dict: |
|
if isinstance(message, ChatMessage): |
|
return dict(role=message.role, content=message.content) |
|
elif isinstance(message, HumanMessage): |
|
return dict(role="user", content=message.content) |
|
elif isinstance(message, AIMessage): |
|
message_dict: Dict[str, Any] = {"role": "assistant"} |
|
tool_calls = [] |
|
if message.tool_calls or message.invalid_tool_calls: |
|
for tool_call in message.tool_calls: |
|
tool_calls.append(_format_tool_call_for_mistral(tool_call)) |
|
for invalid_tool_call in message.invalid_tool_calls: |
|
tool_calls.append( |
|
_format_invalid_tool_call_for_mistral(invalid_tool_call) |
|
) |
|
elif "tool_calls" in message.additional_kwargs: |
|
for tc in message.additional_kwargs["tool_calls"]: |
|
chunk = { |
|
"function": { |
|
"name": tc["function"]["name"], |
|
"arguments": tc["function"]["arguments"], |
|
} |
|
} |
|
if _id := tc.get("id"): |
|
chunk["id"] = _id |
|
tool_calls.append(chunk) |
|
else: |
|
pass |
|
if tool_calls: |
|
message_dict["tool_calls"] = tool_calls |
|
if tool_calls and message.content: |
|
|
|
|
|
|
|
message_dict["content"] = "" |
|
else: |
|
message_dict["content"] = message.content |
|
return message_dict |
|
elif isinstance(message, SystemMessage): |
|
return dict(role="system", content=message.content) |
|
elif isinstance(message, ToolMessage): |
|
return { |
|
"role": "tool", |
|
"content": message.content, |
|
"name": message.name, |
|
} |
|
else: |
|
raise ValueError(f"Got unknown type {message}") |
|
|
|
|
|
class ChatMistralAI(BaseChatModel): |
|
"""A chat model that uses the MistralAI API.""" |
|
|
|
client: httpx.Client = Field(default=None) |
|
async_client: httpx.AsyncClient = Field(default=None) |
|
mistral_api_key: Optional[SecretStr] = Field(default=None, alias="api_key") |
|
endpoint: str = "https://api.mistral.ai/v1" |
|
max_retries: int = 5 |
|
timeout: int = 120 |
|
max_concurrent_requests: int = 64 |
|
model: str = Field(default="mistral-small", alias="model_name") |
|
temperature: float = 0.7 |
|
max_tokens: Optional[int] = None |
|
top_p: float = 1 |
|
"""Decode using nucleus sampling: consider the smallest set of tokens whose |
|
probability sum is at least top_p. Must be in the closed interval [0.0, 1.0].""" |
|
random_seed: Optional[int] = None |
|
safe_mode: bool = False |
|
streaming: bool = False |
|
tools: Optional[List] = None |
|
tool_choice: str = 'auto' |
|
|
|
class Config: |
|
"""Configuration for this pydantic object.""" |
|
|
|
allow_population_by_field_name = True |
|
arbitrary_types_allowed = True |
|
|
|
@property |
|
def _default_params(self) -> Dict[str, Any]: |
|
"""Get the default parameters for calling the API.""" |
|
defaults = { |
|
"model": self.model, |
|
"temperature": self.temperature, |
|
"max_tokens": self.max_tokens, |
|
"top_p": self.top_p, |
|
"random_seed": self.random_seed, |
|
"safe_prompt": self.safe_mode, |
|
"tools": self.tools, |
|
"tool_choice": self.tool_choice, |
|
} |
|
filtered = {k: v for k, v in defaults.items() if v is not None} |
|
return filtered |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@property |
|
def _client_params(self) -> Dict[str, Any]: |
|
"""Get the parameters used for the client.""" |
|
return self._default_params |
|
|
|
def completion_with_retry( |
|
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any |
|
) -> Any: |
|
"""Use tenacity to retry the completion call.""" |
|
|
|
|
|
|
|
def _completion_with_retry(**kwargs: Any) -> Any: |
|
if "stream" not in kwargs: |
|
kwargs["stream"] = False |
|
stream = kwargs["stream"] |
|
if stream: |
|
|
|
def iter_sse() -> Iterator[Dict]: |
|
with connect_sse( |
|
self.client, "POST", "/chat/completions", json=kwargs |
|
) as event_source: |
|
_raise_on_error(event_source.response) |
|
for event in event_source.iter_sse(): |
|
if event.data == "[DONE]": |
|
return |
|
yield event.json() |
|
|
|
return iter_sse() |
|
else: |
|
response = self.client.post(url="/chat/completions", json=kwargs) |
|
_raise_on_error(response) |
|
return response.json() |
|
|
|
rtn = _completion_with_retry(**kwargs) |
|
return rtn |
|
|
|
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: |
|
overall_token_usage: dict = {} |
|
for output in llm_outputs: |
|
if output is None: |
|
|
|
continue |
|
token_usage = output["token_usage"] |
|
if token_usage is not None: |
|
for k, v in token_usage.items(): |
|
if k in overall_token_usage: |
|
overall_token_usage[k] += v |
|
else: |
|
overall_token_usage[k] = v |
|
combined = {"token_usage": overall_token_usage, "model_name": self.model} |
|
return combined |
|
|
|
@root_validator() |
|
def validate_environment(cls, values: Dict) -> Dict: |
|
"""Validate api key, python package exists, temperature, and top_p.""" |
|
|
|
values["mistral_api_key"] = convert_to_secret_str( |
|
get_from_dict_or_env( |
|
values, "mistral_api_key", "MISTRAL_API_KEY", default="" |
|
) |
|
) |
|
api_key_str = values["mistral_api_key"].get_secret_value() |
|
|
|
if not values.get("client"): |
|
values["client"] = httpx.Client( |
|
base_url=values["endpoint"], |
|
headers={ |
|
"Content-Type": "application/json", |
|
"Accept": "application/json", |
|
"Authorization": f"Bearer {api_key_str}", |
|
}, |
|
timeout=values["timeout"], |
|
) |
|
|
|
if not values.get("async_client"): |
|
values["async_client"] = httpx.AsyncClient( |
|
base_url=values["endpoint"], |
|
headers={ |
|
"Content-Type": "application/json", |
|
"Accept": "application/json", |
|
"Authorization": f"Bearer {api_key_str}", |
|
}, |
|
timeout=values["timeout"], |
|
) |
|
|
|
if values["temperature"] is not None and not 0 <= values["temperature"] <= 1: |
|
raise ValueError("temperature must be in the range [0.0, 1.0]") |
|
|
|
if values["top_p"] is not None and not 0 <= values["top_p"] <= 1: |
|
raise ValueError("top_p must be in the range [0.0, 1.0]") |
|
|
|
return values |
|
|
|
def _generate( |
|
self, |
|
messages: List[BaseMessage], |
|
stop: Optional[List[str]] = None, |
|
run_manager: Optional[CallbackManagerForLLMRun] = None, |
|
stream: Optional[bool] = None, |
|
**kwargs: Any, |
|
) -> ChatResult: |
|
should_stream = stream if stream is not None else self.streaming |
|
if should_stream: |
|
stream_iter = self._stream( |
|
messages, stop=stop, run_manager=run_manager, **kwargs |
|
) |
|
return generate_from_stream(stream_iter) |
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop) |
|
params = {**params, **kwargs} |
|
response = self.completion_with_retry( |
|
messages=message_dicts, run_manager=run_manager, **params |
|
) |
|
return self._create_chat_result(response) |
|
|
|
def _create_chat_result(self, response: Dict) -> ChatResult: |
|
generations = [] |
|
if 'choices' not in response: |
|
raise ValueError(f"Expected 'choices' in response, got {response}") |
|
for res in response["choices"]: |
|
finish_reason = res.get("finish_reason") |
|
|
|
if finish_reason == 'tool_calls' and res["message"]['tool_calls'][-1]['function']['name'] == 'JSON': |
|
res['message']['content'] = res["message"]['tool_calls'][-1]['function']['arguments'] |
|
gen = ChatGeneration( |
|
message=_convert_mistral_chat_message_to_message(res["message"]), |
|
generation_info={"finish_reason": finish_reason}, |
|
) |
|
generations.append(gen) |
|
token_usage = response.get("usage", {}) |
|
|
|
llm_output = {"token_usage": token_usage, "model": self.model} |
|
return ChatResult(generations=generations, llm_output=llm_output) |
|
|
|
def _create_message_dicts( |
|
self, messages: List[BaseMessage], stop: Optional[List[str]] |
|
) -> Tuple[List[Dict], Dict[str, Any]]: |
|
params = self._client_params |
|
if stop is not None or "stop" in params: |
|
if "stop" in params: |
|
params.pop("stop") |
|
logger.warning( |
|
"Parameter `stop` not yet supported (https://docs.mistral.ai/api)" |
|
) |
|
message_dicts = [_convert_message_to_mistral_chat_message(m) for m in messages] |
|
return message_dicts, params |
|
|
|
def _stream( |
|
self, |
|
messages: List[BaseMessage], |
|
stop: Optional[List[str]] = None, |
|
run_manager: Optional[CallbackManagerForLLMRun] = None, |
|
**kwargs: Any, |
|
) -> Iterator[ChatGenerationChunk]: |
|
message_dicts, params = self._create_message_dicts(messages, stop) |
|
params = {**params, **kwargs, "stream": True} |
|
|
|
default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk |
|
for chunk in self.completion_with_retry( |
|
messages=message_dicts, run_manager=run_manager, **params |
|
): |
|
if len(chunk["choices"]) == 0: |
|
continue |
|
delta = chunk["choices"][0]["delta"] |
|
new_chunk = _convert_delta_to_message_chunk(delta, default_chunk_class) |
|
|
|
default_chunk_class = new_chunk.__class__ |
|
gen_chunk = ChatGenerationChunk(message=new_chunk) |
|
if run_manager: |
|
run_manager.on_llm_new_token( |
|
token=cast(str, new_chunk.content), chunk=gen_chunk |
|
) |
|
yield gen_chunk |
|
|
|
async def _astream( |
|
self, |
|
messages: List[BaseMessage], |
|
stop: Optional[List[str]] = None, |
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, |
|
**kwargs: Any, |
|
) -> AsyncIterator[ChatGenerationChunk]: |
|
message_dicts, params = self._create_message_dicts(messages, stop) |
|
params = {**params, **kwargs, "stream": True} |
|
|
|
default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk |
|
async for chunk in await acompletion_with_retry( |
|
self, messages=message_dicts, run_manager=run_manager, **params |
|
): |
|
if len(chunk["choices"]) == 0: |
|
continue |
|
delta = chunk["choices"][0]["delta"] |
|
new_chunk = _convert_delta_to_message_chunk(delta, default_chunk_class) |
|
|
|
default_chunk_class = new_chunk.__class__ |
|
gen_chunk = ChatGenerationChunk(message=new_chunk) |
|
if run_manager: |
|
await run_manager.on_llm_new_token( |
|
token=cast(str, new_chunk.content), chunk=gen_chunk |
|
) |
|
yield gen_chunk |
|
|
|
async def _agenerate( |
|
self, |
|
messages: List[BaseMessage], |
|
stop: Optional[List[str]] = None, |
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, |
|
stream: Optional[bool] = None, |
|
**kwargs: Any, |
|
) -> ChatResult: |
|
should_stream = stream if stream is not None else False |
|
if should_stream: |
|
stream_iter = self._astream( |
|
messages=messages, stop=stop, run_manager=run_manager, **kwargs |
|
) |
|
return await agenerate_from_stream(stream_iter) |
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop) |
|
params = {**params, **kwargs} |
|
response = await acompletion_with_retry( |
|
self, messages=message_dicts, run_manager=run_manager, **params |
|
) |
|
return self._create_chat_result(response) |
|
|
|
def bind_tools( |
|
self, |
|
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]], |
|
**kwargs: Any, |
|
) -> Runnable[LanguageModelInput, BaseMessage]: |
|
"""Bind tool-like objects to this chat model. |
|
|
|
Assumes model is compatible with OpenAI tool-calling API. |
|
|
|
Args: |
|
tools: A list of tool definitions to bind to this chat model. |
|
Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic |
|
models, callables, and BaseTools will be automatically converted to |
|
their schema dictionary representation. |
|
tool_choice: Which tool to require the model to call. |
|
Must be the name of the single provided function or |
|
"auto" to automatically determine which function to call |
|
(if any), or a dict of the form: |
|
{"type": "function", "function": {"name": <<tool_name>>}}. |
|
**kwargs: Any additional parameters to pass to the |
|
:class:`~langchain.runnable.Runnable` constructor. |
|
""" |
|
|
|
formatted_tools = [convert_to_openai_tool(tool) for tool in tools] |
|
return super().bind(tools=formatted_tools, **kwargs) |
|
|
|
def with_structured_output( |
|
self, |
|
schema: Optional[Union[Dict, Type[BaseModel]]] = None, |
|
*, |
|
method: Literal["function_calling", "json_mode"] = "function_calling", |
|
include_raw: bool = False, |
|
**kwargs: Any, |
|
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]: |
|
"""Model wrapper that returns outputs formatted to match the given schema. |
|
|
|
Args: |
|
schema: The output schema as a dict or a Pydantic class. If a Pydantic class |
|
then the model output will be an object of that class. If a dict then |
|
the model output will be a dict. With a Pydantic class the returned |
|
attributes will be validated, whereas with a dict they will not be. If |
|
`method` is "function_calling" and `schema` is a dict, then the dict |
|
must match the OpenAI function-calling spec. |
|
method: The method for steering model generation, either "function_calling" |
|
or "json_mode". If "function_calling" then the schema will be converted |
|
to an OpenAI function and the returned model will make use of the |
|
function-calling API. If "json_mode" then OpenAI's JSON mode will be |
|
used. Note that if using "json_mode" then you must include instructions |
|
for formatting the output into the desired schema into the model call. |
|
include_raw: If False then only the parsed structured output is returned. If |
|
an error occurs during model output parsing it will be raised. If True |
|
then both the raw model response (a BaseMessage) and the parsed model |
|
response will be returned. If an error occurs during output parsing it |
|
will be caught and returned as well. The final output is always a dict |
|
with keys "raw", "parsed", and "parsing_error". |
|
|
|
Returns: |
|
A Runnable that takes any ChatModel input and returns as output: |
|
|
|
If include_raw is True then a dict with keys: |
|
raw: BaseMessage |
|
parsed: Optional[_DictOrPydantic] |
|
parsing_error: Optional[BaseException] |
|
|
|
If include_raw is False then just _DictOrPydantic is returned, |
|
where _DictOrPydantic depends on the schema: |
|
|
|
If schema is a Pydantic class then _DictOrPydantic is the Pydantic |
|
class. |
|
|
|
If schema is a dict then _DictOrPydantic is a dict. |
|
|
|
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=False): |
|
.. code-block:: python |
|
|
|
from langchain_mistralai import ChatMistralAI |
|
from langchain_core.pydantic_v1 import BaseModel |
|
|
|
class AnswerWithJustification(BaseModel): |
|
'''An answer to the user question along with justification for the answer.''' |
|
answer: str |
|
justification: str |
|
|
|
llm = ChatMistralAI(model="mistral-large-latest", temperature=0) |
|
structured_llm = llm.with_structured_output(AnswerWithJustification) |
|
|
|
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") |
|
|
|
# -> AnswerWithJustification( |
|
# answer='They weigh the same', |
|
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.' |
|
# ) |
|
|
|
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=True): |
|
.. code-block:: python |
|
|
|
from langchain_mistralai import ChatMistralAI |
|
from langchain_core.pydantic_v1 import BaseModel |
|
|
|
class AnswerWithJustification(BaseModel): |
|
'''An answer to the user question along with justification for the answer.''' |
|
answer: str |
|
justification: str |
|
|
|
llm = ChatMistralAI(model="mistral-large-latest", temperature=0) |
|
structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True) |
|
|
|
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") |
|
# -> { |
|
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}), |
|
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'), |
|
# 'parsing_error': None |
|
# } |
|
|
|
Example: Function-calling, dict schema (method="function_calling", include_raw=False): |
|
.. code-block:: python |
|
|
|
from langchain_mistralai import ChatMistralAI |
|
from langchain_core.pydantic_v1 import BaseModel |
|
from langchain_core.utils.function_calling import convert_to_openai_tool |
|
|
|
class AnswerWithJustification(BaseModel): |
|
'''An answer to the user question along with justification for the answer.''' |
|
answer: str |
|
justification: str |
|
|
|
dict_schema = convert_to_openai_tool(AnswerWithJustification) |
|
llm = ChatMistralAI(model="mistral-large-latest", temperature=0) |
|
structured_llm = llm.with_structured_output(dict_schema) |
|
|
|
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") |
|
# -> { |
|
# 'answer': 'They weigh the same', |
|
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.' |
|
# } |
|
|
|
Example: JSON mode, Pydantic schema (method="json_mode", include_raw=True): |
|
.. code-block:: |
|
|
|
from langchain_mistralai import ChatMistralAI |
|
from langchain_core.pydantic_v1 import BaseModel |
|
|
|
class AnswerWithJustification(BaseModel): |
|
answer: str |
|
justification: str |
|
|
|
llm = ChatMistralAI(model="mistral-large-latest", temperature=0) |
|
structured_llm = llm.with_structured_output( |
|
AnswerWithJustification, |
|
method="json_mode", |
|
include_raw=True |
|
) |
|
|
|
structured_llm.invoke( |
|
"Answer the following question. " |
|
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n" |
|
"What's heavier a pound of bricks or a pound of feathers?" |
|
) |
|
# -> { |
|
# 'raw': AIMessage(content='{\n "answer": "They are both the same weight.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'), |
|
# 'parsed': AnswerWithJustification(answer='They are both the same weight.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'), |
|
# 'parsing_error': None |
|
# } |
|
|
|
Example: JSON mode, no schema (schema=None, method="json_mode", include_raw=True): |
|
.. code-block:: |
|
|
|
from langchain_mistralai import ChatMistralAI |
|
|
|
structured_llm = llm.with_structured_output(method="json_mode", include_raw=True) |
|
|
|
structured_llm.invoke( |
|
"Answer the following question. " |
|
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n" |
|
"What's heavier a pound of bricks or a pound of feathers?" |
|
) |
|
# -> { |
|
# 'raw': AIMessage(content='{\n "answer": "They are both the same weight.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'), |
|
# 'parsed': { |
|
# 'answer': 'They are both the same weight.', |
|
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.' |
|
# }, |
|
# 'parsing_error': None |
|
# } |
|
""" |
|
if kwargs: |
|
raise ValueError(f"Received unsupported arguments {kwargs}") |
|
is_pydantic_schema = isinstance(schema, type) and issubclass(schema, BaseModel) |
|
if method == "function_calling": |
|
if schema is None: |
|
raise ValueError( |
|
"schema must be specified when method is 'function_calling'. " |
|
"Received None." |
|
) |
|
llm = self.bind_tools([schema], tool_choice="any") |
|
if is_pydantic_schema: |
|
output_parser: OutputParserLike = PydanticToolsParser( |
|
tools=[schema], first_tool_only=True |
|
) |
|
else: |
|
key_name = convert_to_openai_tool(schema)["function"]["name"] |
|
output_parser = JsonOutputKeyToolsParser( |
|
key_name=key_name, first_tool_only=True |
|
) |
|
elif method == "json_mode": |
|
llm = self.bind(response_format={"type": "json_object"}) |
|
output_parser = ( |
|
PydanticOutputParser(pydantic_object=schema) |
|
if is_pydantic_schema |
|
else JsonOutputParser() |
|
) |
|
if include_raw: |
|
parser_assign = RunnablePassthrough.assign( |
|
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None |
|
) |
|
parser_none = RunnablePassthrough.assign(parsed=lambda _: None) |
|
parser_with_fallback = parser_assign.with_fallbacks( |
|
[parser_none], exception_key="parsing_error" |
|
) |
|
return RunnableMap(raw=llm) | parser_with_fallback |
|
else: |
|
return llm | output_parser |
|
|
|
@property |
|
def _identifying_params(self) -> Dict[str, Any]: |
|
"""Get the identifying parameters.""" |
|
return self._default_params |
|
|
|
@property |
|
def _llm_type(self) -> str: |
|
"""Return type of chat model.""" |
|
return "mistralai-chat" |
|
|
|
@property |
|
def lc_secrets(self) -> Dict[str, str]: |
|
return {"mistral_api_key": "MISTRAL_API_KEY"} |
|
|
|
@classmethod |
|
def is_lc_serializable(cls) -> bool: |
|
"""Return whether this model can be serialized by Langchain.""" |
|
return True |
|
|
|
@classmethod |
|
def get_lc_namespace(cls) -> List[str]: |
|
"""Get the namespace of the langchain object.""" |
|
return ["langchain", "chat_models", "mistralai"] |