File size: 35,323 Bytes
3943768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 |
from __future__ import annotations
import json
import logging
import uuid
from operator import itemgetter
from typing import (
Any,
AsyncContextManager,
AsyncIterator,
Callable,
Dict,
Iterator,
List,
Literal,
Optional,
Sequence,
Tuple,
Type,
Union,
cast,
)
import httpx
from httpx_sse import EventSource, aconnect_sse, connect_sse
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
BaseChatModel,
#LangSmithParams,
agenerate_from_stream,
generate_from_stream,
)
from langchain_core.language_models.llms import create_base_retry_decorator
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
ChatMessage,
ChatMessageChunk,
HumanMessage,
HumanMessageChunk,
InvalidToolCall,
SystemMessage,
SystemMessageChunk,
ToolCall,
ToolMessage,
)
from langchain_core.output_parsers import (
JsonOutputParser,
PydanticOutputParser,
)
from langchain_core.output_parsers.base import OutputParserLike
from langchain_core.output_parsers.openai_tools import (
JsonOutputKeyToolsParser,
PydanticToolsParser,
make_invalid_tool_call,
parse_tool_call,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
from langchain_core.tools import BaseTool
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from langchain_core.utils.function_calling import convert_to_openai_tool
logger = logging.getLogger(__name__)
def _create_retry_decorator(
llm: ChatMistralAI,
run_manager: Optional[
Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun]
] = None,
) -> Callable[[Any], Any]:
"""Returns a tenacity retry decorator, preconfigured to handle exceptions"""
errors = [httpx.RequestError, httpx.StreamError]
return create_base_retry_decorator(
error_types=errors, max_retries=llm.max_retries, run_manager=run_manager
)
def _convert_mistral_chat_message_to_message(
_message: Dict,
) -> BaseMessage:
role = _message["role"]
assert role == "assistant", f"Expected role to be 'assistant', got {role}"
content = cast(str, _message["content"])
additional_kwargs: Dict = {}
tool_calls = []
invalid_tool_calls = []
if raw_tool_calls := _message.get("tool_calls"):
additional_kwargs["tool_calls"] = raw_tool_calls
for raw_tool_call in raw_tool_calls:
try:
parsed: dict = cast(
dict, parse_tool_call(raw_tool_call, return_id=True)
)
if not parsed["id"]:
tool_call_id = uuid.uuid4().hex[:]
tool_calls.append(
{
**parsed,
**{"id": tool_call_id},
},
)
else:
tool_calls.append(parsed)
except Exception as e:
invalid_tool_calls.append(
dict(make_invalid_tool_call(raw_tool_call, str(e)))
)
return AIMessage(
content=content,
additional_kwargs=additional_kwargs,
tool_calls=tool_calls,
invalid_tool_calls=invalid_tool_calls,
)
def _raise_on_error(response: httpx.Response) -> None:
"""Raise an error if the response is an error."""
if httpx.codes.is_error(response.status_code):
error_message = response.read().decode("utf-8")
raise httpx.HTTPStatusError(
f"Error response {response.status_code} "
f"while fetching {response.url}: {error_message}",
request=response.request,
response=response,
)
async def _araise_on_error(response: httpx.Response) -> None:
"""Raise an error if the response is an error."""
if httpx.codes.is_error(response.status_code):
error_message = (await response.aread()).decode("utf-8")
raise httpx.HTTPStatusError(
f"Error response {response.status_code} "
f"while fetching {response.url}: {error_message}",
request=response.request,
response=response,
)
async def _aiter_sse(
event_source_mgr: AsyncContextManager[EventSource],
) -> AsyncIterator[Dict]:
"""Iterate over the server-sent events."""
async with event_source_mgr as event_source:
await _araise_on_error(event_source.response)
async for event in event_source.aiter_sse():
if event.data == "[DONE]":
return
yield event.json()
async def acompletion_with_retry(
llm: ChatMistralAI,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Any:
"""Use tenacity to retry the async completion call."""
retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)
@retry_decorator
async def _completion_with_retry(**kwargs: Any) -> Any:
if "stream" not in kwargs:
kwargs["stream"] = False
stream = kwargs["stream"]
if stream:
event_source = aconnect_sse(
llm.async_client, "POST", "/chat/completions", json=kwargs
)
return _aiter_sse(event_source)
else:
response = await llm.async_client.post(url="/chat/completions", json=kwargs)
await _araise_on_error(response)
return response.json()
return await _completion_with_retry(**kwargs)
def _convert_delta_to_message_chunk(
_delta: Dict, default_class: Type[BaseMessageChunk]
) -> BaseMessageChunk:
role = _delta.get("role")
content = _delta.get("content") or ""
if role == "user" or default_class == HumanMessageChunk:
return HumanMessageChunk(content=content)
elif role == "assistant" or default_class == AIMessageChunk:
additional_kwargs: Dict = {}
raw_tool_calls = _delta.get("tool_calls")
tool_call_chunks = []
# JSON mode using function calling
if raw_tool_calls and _delta['tool_calls'][-1]['function']['name'] == 'JSON':
content = _delta['tool_calls'][-1]['function']['arguments']
elif raw_tool_calls:
additional_kwargs["tool_calls"] = raw_tool_calls
try:
tool_call_chunks = []
for raw_tool_call in raw_tool_calls:
if not raw_tool_call.get("index") and not raw_tool_call.get("id"):
tool_call_id = uuid.uuid4().hex[:]
else:
tool_call_id = raw_tool_call.get("id")
tool_call_chunks.append(
{
"name": raw_tool_call["function"].get("name"),
"args": raw_tool_call["function"].get("arguments"),
"id": tool_call_id,
"index": raw_tool_call.get("index"),
}
)
except KeyError:
pass
return AIMessageChunk(
content=content,
additional_kwargs=additional_kwargs,
tool_call_chunks=tool_call_chunks,
)
elif role == "system" or default_class == SystemMessageChunk:
return SystemMessageChunk(content=content)
elif role or default_class == ChatMessageChunk:
return ChatMessageChunk(content=content, role=role)
else:
return default_class(content=content)
def _format_tool_call_for_mistral(tool_call: ToolCall) -> dict:
"""Format Langchain ToolCall to dict expected by Mistral."""
result: Dict[str, Any] = {
"function": {
"name": tool_call["name"],
"arguments": json.dumps(tool_call["args"]),
}
}
if _id := tool_call.get("id"):
result["id"] = _id
return result
def _format_invalid_tool_call_for_mistral(invalid_tool_call: InvalidToolCall) -> dict:
"""Format Langchain InvalidToolCall to dict expected by Mistral."""
result: Dict[str, Any] = {
"function": {
"name": invalid_tool_call["name"],
"arguments": invalid_tool_call["args"],
}
}
if _id := invalid_tool_call.get("id"):
result["id"] = _id
return result
def _convert_message_to_mistral_chat_message(
message: BaseMessage,
) -> Dict:
if isinstance(message, ChatMessage):
return dict(role=message.role, content=message.content)
elif isinstance(message, HumanMessage):
return dict(role="user", content=message.content)
elif isinstance(message, AIMessage):
message_dict: Dict[str, Any] = {"role": "assistant"}
tool_calls = []
if message.tool_calls or message.invalid_tool_calls:
for tool_call in message.tool_calls:
tool_calls.append(_format_tool_call_for_mistral(tool_call))
for invalid_tool_call in message.invalid_tool_calls:
tool_calls.append(
_format_invalid_tool_call_for_mistral(invalid_tool_call)
)
elif "tool_calls" in message.additional_kwargs:
for tc in message.additional_kwargs["tool_calls"]:
chunk = {
"function": {
"name": tc["function"]["name"],
"arguments": tc["function"]["arguments"],
}
}
if _id := tc.get("id"):
chunk["id"] = _id
tool_calls.append(chunk)
else:
pass
if tool_calls: # do not populate empty list tool_calls
message_dict["tool_calls"] = tool_calls
if tool_calls and message.content:
# Assistant message must have either content or tool_calls, but not both.
# Some providers may not support tool_calls in the same message as content.
# This is done to ensure compatibility with messages from other providers.
message_dict["content"] = ""
else:
message_dict["content"] = message.content
return message_dict
elif isinstance(message, SystemMessage):
return dict(role="system", content=message.content)
elif isinstance(message, ToolMessage):
return {
"role": "tool",
"content": message.content,
"name": message.name,
}
else:
raise ValueError(f"Got unknown type {message}")
class ChatMistralAI(BaseChatModel):
"""A chat model that uses the MistralAI API."""
client: httpx.Client = Field(default=None) #: :meta private:
async_client: httpx.AsyncClient = Field(default=None) #: :meta private:
mistral_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
endpoint: str = "https://api.mistral.ai/v1"
max_retries: int = 5
timeout: int = 120
max_concurrent_requests: int = 64
model: str = Field(default="mistral-small", alias="model_name")
temperature: float = 0.7
max_tokens: Optional[int] = None
top_p: float = 1
"""Decode using nucleus sampling: consider the smallest set of tokens whose
probability sum is at least top_p. Must be in the closed interval [0.0, 1.0]."""
random_seed: Optional[int] = None
safe_mode: bool = False
streaming: bool = False
tools: Optional[List] = None
tool_choice: str = 'auto'
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
arbitrary_types_allowed = True
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling the API."""
defaults = {
"model": self.model,
"temperature": self.temperature,
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"random_seed": self.random_seed,
"safe_prompt": self.safe_mode,
"tools": self.tools,
"tool_choice": self.tool_choice,
}
filtered = {k: v for k, v in defaults.items() if v is not None}
return filtered
# def _get_ls_params(
# self, stop: Optional[List[str]] = None, **kwargs: Any
# ) -> LangSmithParams:
# """Get standard params for tracing."""
# params = self._get_invocation_params(stop=stop, **kwargs)
# ls_params = LangSmithParams(
# ls_provider="mistral",
# ls_model_name=self.model,
# ls_model_type="chat",
# ls_temperature=params.get("temperature", self.temperature),
# )
# if ls_max_tokens := params.get("max_tokens", self.max_tokens):
# ls_params["ls_max_tokens"] = ls_max_tokens
# if ls_stop := stop or params.get("stop", None):
# ls_params["ls_stop"] = ls_stop
# return ls_params
@property
def _client_params(self) -> Dict[str, Any]:
"""Get the parameters used for the client."""
return self._default_params
def completion_with_retry(
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any
) -> Any:
"""Use tenacity to retry the completion call."""
# retry_decorator = _create_retry_decorator(self, run_manager=run_manager)
# @retry_decorator
def _completion_with_retry(**kwargs: Any) -> Any:
if "stream" not in kwargs:
kwargs["stream"] = False
stream = kwargs["stream"]
if stream:
def iter_sse() -> Iterator[Dict]:
with connect_sse(
self.client, "POST", "/chat/completions", json=kwargs
) as event_source:
_raise_on_error(event_source.response)
for event in event_source.iter_sse():
if event.data == "[DONE]":
return
yield event.json()
return iter_sse()
else:
response = self.client.post(url="/chat/completions", json=kwargs)
_raise_on_error(response)
return response.json()
rtn = _completion_with_retry(**kwargs)
return rtn
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
overall_token_usage: dict = {}
for output in llm_outputs:
if output is None:
# Happens in streaming
continue
token_usage = output["token_usage"]
if token_usage is not None:
for k, v in token_usage.items():
if k in overall_token_usage:
overall_token_usage[k] += v
else:
overall_token_usage[k] = v
combined = {"token_usage": overall_token_usage, "model_name": self.model}
return combined
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate api key, python package exists, temperature, and top_p."""
values["mistral_api_key"] = convert_to_secret_str(
get_from_dict_or_env(
values, "mistral_api_key", "MISTRAL_API_KEY", default=""
)
)
api_key_str = values["mistral_api_key"].get_secret_value()
# todo: handle retries
if not values.get("client"):
values["client"] = httpx.Client(
base_url=values["endpoint"],
headers={
"Content-Type": "application/json",
"Accept": "application/json",
"Authorization": f"Bearer {api_key_str}",
},
timeout=values["timeout"],
)
# todo: handle retries and max_concurrency
if not values.get("async_client"):
values["async_client"] = httpx.AsyncClient(
base_url=values["endpoint"],
headers={
"Content-Type": "application/json",
"Accept": "application/json",
"Authorization": f"Bearer {api_key_str}",
},
timeout=values["timeout"],
)
if values["temperature"] is not None and not 0 <= values["temperature"] <= 1:
raise ValueError("temperature must be in the range [0.0, 1.0]")
if values["top_p"] is not None and not 0 <= values["top_p"] <= 1:
raise ValueError("top_p must be in the range [0.0, 1.0]")
return values
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> ChatResult:
should_stream = stream if stream is not None else self.streaming
if should_stream:
stream_iter = self._stream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return generate_from_stream(stream_iter)
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs}
response = self.completion_with_retry(
messages=message_dicts, run_manager=run_manager, **params
)
return self._create_chat_result(response)
def _create_chat_result(self, response: Dict) -> ChatResult:
generations = []
if 'choices' not in response:
raise ValueError(f"Expected 'choices' in response, got {response}")
for res in response["choices"]:
finish_reason = res.get("finish_reason")
# JSON mode using function calling
if finish_reason == 'tool_calls' and res["message"]['tool_calls'][-1]['function']['name'] == 'JSON':
res['message']['content'] = res["message"]['tool_calls'][-1]['function']['arguments']
gen = ChatGeneration(
message=_convert_mistral_chat_message_to_message(res["message"]),
generation_info={"finish_reason": finish_reason},
)
generations.append(gen)
token_usage = response.get("usage", {})
llm_output = {"token_usage": token_usage, "model": self.model}
return ChatResult(generations=generations, llm_output=llm_output)
def _create_message_dicts(
self, messages: List[BaseMessage], stop: Optional[List[str]]
) -> Tuple[List[Dict], Dict[str, Any]]:
params = self._client_params
if stop is not None or "stop" in params:
if "stop" in params:
params.pop("stop")
logger.warning(
"Parameter `stop` not yet supported (https://docs.mistral.ai/api)"
)
message_dicts = [_convert_message_to_mistral_chat_message(m) for m in messages]
return message_dicts, params
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs, "stream": True}
default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk
for chunk in self.completion_with_retry(
messages=message_dicts, run_manager=run_manager, **params
):
if len(chunk["choices"]) == 0:
continue
delta = chunk["choices"][0]["delta"]
new_chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
# make future chunks same type as first chunk
default_chunk_class = new_chunk.__class__
gen_chunk = ChatGenerationChunk(message=new_chunk)
if run_manager:
run_manager.on_llm_new_token(
token=cast(str, new_chunk.content), chunk=gen_chunk
)
yield gen_chunk
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs, "stream": True}
default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk
async for chunk in await acompletion_with_retry(
self, messages=message_dicts, run_manager=run_manager, **params
):
if len(chunk["choices"]) == 0:
continue
delta = chunk["choices"][0]["delta"]
new_chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
# make future chunks same type as first chunk
default_chunk_class = new_chunk.__class__
gen_chunk = ChatGenerationChunk(message=new_chunk)
if run_manager:
await run_manager.on_llm_new_token(
token=cast(str, new_chunk.content), chunk=gen_chunk
)
yield gen_chunk
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> ChatResult:
should_stream = stream if stream is not None else False
if should_stream:
stream_iter = self._astream(
messages=messages, stop=stop, run_manager=run_manager, **kwargs
)
return await agenerate_from_stream(stream_iter)
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs}
response = await acompletion_with_retry(
self, messages=message_dicts, run_manager=run_manager, **params
)
return self._create_chat_result(response)
def bind_tools(
self,
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
**kwargs: Any,
) -> Runnable[LanguageModelInput, BaseMessage]:
"""Bind tool-like objects to this chat model.
Assumes model is compatible with OpenAI tool-calling API.
Args:
tools: A list of tool definitions to bind to this chat model.
Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic
models, callables, and BaseTools will be automatically converted to
their schema dictionary representation.
tool_choice: Which tool to require the model to call.
Must be the name of the single provided function or
"auto" to automatically determine which function to call
(if any), or a dict of the form:
{"type": "function", "function": {"name": <<tool_name>>}}.
**kwargs: Any additional parameters to pass to the
:class:`~langchain.runnable.Runnable` constructor.
"""
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
return super().bind(tools=formatted_tools, **kwargs)
def with_structured_output(
self,
schema: Optional[Union[Dict, Type[BaseModel]]] = None,
*,
method: Literal["function_calling", "json_mode"] = "function_calling",
include_raw: bool = False,
**kwargs: Any,
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
"""Model wrapper that returns outputs formatted to match the given schema.
Args:
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
then the model output will be an object of that class. If a dict then
the model output will be a dict. With a Pydantic class the returned
attributes will be validated, whereas with a dict they will not be. If
`method` is "function_calling" and `schema` is a dict, then the dict
must match the OpenAI function-calling spec.
method: The method for steering model generation, either "function_calling"
or "json_mode". If "function_calling" then the schema will be converted
to an OpenAI function and the returned model will make use of the
function-calling API. If "json_mode" then OpenAI's JSON mode will be
used. Note that if using "json_mode" then you must include instructions
for formatting the output into the desired schema into the model call.
include_raw: If False then only the parsed structured output is returned. If
an error occurs during model output parsing it will be raised. If True
then both the raw model response (a BaseMessage) and the parsed model
response will be returned. If an error occurs during output parsing it
will be caught and returned as well. The final output is always a dict
with keys "raw", "parsed", and "parsing_error".
Returns:
A Runnable that takes any ChatModel input and returns as output:
If include_raw is True then a dict with keys:
raw: BaseMessage
parsed: Optional[_DictOrPydantic]
parsing_error: Optional[BaseException]
If include_raw is False then just _DictOrPydantic is returned,
where _DictOrPydantic depends on the schema:
If schema is a Pydantic class then _DictOrPydantic is the Pydantic
class.
If schema is a dict then _DictOrPydantic is a dict.
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=False):
.. code-block:: python
from langchain_mistralai import ChatMistralAI
from langchain_core.pydantic_v1 import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
llm = ChatMistralAI(model="mistral-large-latest", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification)
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
# -> AnswerWithJustification(
# answer='They weigh the same',
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
# )
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=True):
.. code-block:: python
from langchain_mistralai import ChatMistralAI
from langchain_core.pydantic_v1 import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
llm = ChatMistralAI(model="mistral-large-latest", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True)
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
# -> {
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
# 'parsing_error': None
# }
Example: Function-calling, dict schema (method="function_calling", include_raw=False):
.. code-block:: python
from langchain_mistralai import ChatMistralAI
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.utils.function_calling import convert_to_openai_tool
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
dict_schema = convert_to_openai_tool(AnswerWithJustification)
llm = ChatMistralAI(model="mistral-large-latest", temperature=0)
structured_llm = llm.with_structured_output(dict_schema)
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
# -> {
# 'answer': 'They weigh the same',
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }
Example: JSON mode, Pydantic schema (method="json_mode", include_raw=True):
.. code-block::
from langchain_mistralai import ChatMistralAI
from langchain_core.pydantic_v1 import BaseModel
class AnswerWithJustification(BaseModel):
answer: str
justification: str
llm = ChatMistralAI(model="mistral-large-latest", temperature=0)
structured_llm = llm.with_structured_output(
AnswerWithJustification,
method="json_mode",
include_raw=True
)
structured_llm.invoke(
"Answer the following question. "
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
"What's heavier a pound of bricks or a pound of feathers?"
)
# -> {
# 'raw': AIMessage(content='{\n "answer": "They are both the same weight.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'),
# 'parsed': AnswerWithJustification(answer='They are both the same weight.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'),
# 'parsing_error': None
# }
Example: JSON mode, no schema (schema=None, method="json_mode", include_raw=True):
.. code-block::
from langchain_mistralai import ChatMistralAI
structured_llm = llm.with_structured_output(method="json_mode", include_raw=True)
structured_llm.invoke(
"Answer the following question. "
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
"What's heavier a pound of bricks or a pound of feathers?"
)
# -> {
# 'raw': AIMessage(content='{\n "answer": "They are both the same weight.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'),
# 'parsed': {
# 'answer': 'They are both the same weight.',
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'
# },
# 'parsing_error': None
# }
""" # noqa: E501
if kwargs:
raise ValueError(f"Received unsupported arguments {kwargs}")
is_pydantic_schema = isinstance(schema, type) and issubclass(schema, BaseModel)
if method == "function_calling":
if schema is None:
raise ValueError(
"schema must be specified when method is 'function_calling'. "
"Received None."
)
llm = self.bind_tools([schema], tool_choice="any")
if is_pydantic_schema:
output_parser: OutputParserLike = PydanticToolsParser(
tools=[schema], first_tool_only=True
)
else:
key_name = convert_to_openai_tool(schema)["function"]["name"]
output_parser = JsonOutputKeyToolsParser(
key_name=key_name, first_tool_only=True
)
elif method == "json_mode":
llm = self.bind(response_format={"type": "json_object"})
output_parser = (
PydanticOutputParser(pydantic_object=schema)
if is_pydantic_schema
else JsonOutputParser()
)
if include_raw:
parser_assign = RunnablePassthrough.assign(
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
)
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
parser_with_fallback = parser_assign.with_fallbacks(
[parser_none], exception_key="parsing_error"
)
return RunnableMap(raw=llm) | parser_with_fallback
else:
return llm | output_parser
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return self._default_params
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "mistralai-chat"
@property
def lc_secrets(self) -> Dict[str, str]:
return {"mistral_api_key": "MISTRAL_API_KEY"}
@classmethod
def is_lc_serializable(cls) -> bool:
"""Return whether this model can be serialized by Langchain."""
return True
@classmethod
def get_lc_namespace(cls) -> List[str]:
"""Get the namespace of the langchain object."""
return ["langchain", "chat_models", "mistralai"] |