File size: 1,531 Bytes
50160f2
4e630e1
50160f2
19d6e2b
4e630e1
 
8a7e2df
4e630e1
19d6e2b
 
 
c380748
8a7e2df
c380748
50160f2
c380748
 
 
 
 
 
 
 
 
 
 
19d6e2b
 
 
 
52101ba
19d6e2b
 
 
 
 
 
 
4e630e1
c380748
 
19d6e2b
 
c380748
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import streamlit as st
from transformers import GPT2LMHeadModel, GPT2Tokenizer

# Load the model and tokenizer
model_name = "gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_name)

model = GPT2LMHeadModel.from_pretrained(model_name)

# Function to create the prompt
def make_prompt(new_title):
    prompt = f"""
    Write a Blog Post On the given Title like the example:
    Title: The Benefits of Daily Meditation

    Blog Content:
    Meditation is a practice where an individual uses a technique – such as mindfulness, 
or focusing the mind on a particular object, thought, or activity – to train attention and awareness, 
and achieve a mentally clear and emotionally calm and stable state. Daily meditation can bring numerous 
benefits such as reducing stress, improving concentration, and promoting a healthy lifestyle.

    Title: {new_title}

    Blog Content:
    """
    return prompt

# Function to generate the blog content
def generate_blog(prompt):
    input_ids = tokenizer.encode(prompt, return_tensors='pt')
    output = model.generate(input_ids, max_length=800, num_return_sequences=1, no_repeat_ngram_size=2)
    return tokenizer.decode(output[0], skip_special_tokens=True)

# Streamlit interface
st.title("AI Blog Generator")

# Input box for the blog title
title = st.text_input("Enter the Blog Title:")

if st.button("Generate Blog"):
    if title:
        prompt = make_prompt(title)
        blog_content = generate_blog(prompt)
        st.subheader("Generated Blog")
        st.write(blog_content)