Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,16 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
3 |
|
4 |
-
# Load GPT-2 model and tokenizer
|
5 |
model_name = "gpt2"
|
6 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
7 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
8 |
|
9 |
def generate_blog(title):
|
10 |
input_ids = tokenizer.encode(title, return_tensors='pt')
|
11 |
-
output = model.generate(input_ids, max_length=
|
12 |
blog = tokenizer.decode(output[0], skip_special_tokens=True)
|
13 |
return blog
|
14 |
|
15 |
-
# Streamlit app
|
16 |
st.title("AI Blog Generator")
|
17 |
st.write("Enter a blog title and the AI will generate the blog content for you.")
|
18 |
|
@@ -24,5 +22,3 @@ if st.button("Generate Blog"):
|
|
24 |
blog_content = generate_blog(title)
|
25 |
st.subheader("Generated Blog")
|
26 |
st.write(blog_content)
|
27 |
-
else:
|
28 |
-
st.error("Please enter a blog title.")
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
3 |
|
|
|
4 |
model_name = "gpt2"
|
5 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
6 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
7 |
|
8 |
def generate_blog(title):
|
9 |
input_ids = tokenizer.encode(title, return_tensors='pt')
|
10 |
+
output = model.generate(input_ids, max_length=800, num_return_sequences=1, no_repeat_ngram_size=2)
|
11 |
blog = tokenizer.decode(output[0], skip_special_tokens=True)
|
12 |
return blog
|
13 |
|
|
|
14 |
st.title("AI Blog Generator")
|
15 |
st.write("Enter a blog title and the AI will generate the blog content for you.")
|
16 |
|
|
|
22 |
blog_content = generate_blog(title)
|
23 |
st.subheader("Generated Blog")
|
24 |
st.write(blog_content)
|
|
|
|