Update README.md
Browse files
README.md
CHANGED
|
@@ -1,10 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
---
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
| 1 |
+
# π°οΈ ZETIC.ai β On-Device AI for Every Device
|
| 2 |
+
|
| 3 |
+
**Build. Deploy. Run. Anywhere.**
|
| 4 |
+
ZETIC.ai helps AI engineers deploy models on *any* mobile device β without cloud GPU servers.
|
| 5 |
+
We transform your existing AI models into **NPU-optimized, on-device runtimes** in **under 24 hours**.
|
| 6 |
+
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
## π What We Do
|
| 10 |
+
|
| 11 |
+
**ZETIC.MLange** β our core platform β enables **serverless AI** by:
|
| 12 |
+
- **Automated Conversion**: Convert your PyTorch, ONNX, or TFLite model into a device-specific NPU library.
|
| 13 |
+
- **Peak Performance**: Up to **60Γ faster** than GPU cloud inference, with zero accuracy loss.
|
| 14 |
+
- **Broad Compatibility**: Supports Android, iOS, Linux; MediaTek, Qualcomm, Apple NPUs β more coming soon.
|
| 15 |
+
- **End-to-End SDK**: From model optimization to app integration β no extra engineering required.
|
| 16 |
+
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
## π Key Features
|
| 20 |
+
|
| 21 |
+
- **Zero GPU Costs** β Replace expensive GPU cloud servers with *free* NPU power in devices.
|
| 22 |
+
- **Full Privacy & Security** β Data never leaves the device.
|
| 23 |
+
- **Ultra-Low Latency** β Real-time AI experiences, even offline.
|
| 24 |
+
- **Cross-Platform** β One model β All devices β Same performance.
|
| 25 |
+
|
| 26 |
+
---
|
| 27 |
+
|
| 28 |
+
## π¦ Example Use Cases
|
| 29 |
+
|
| 30 |
+
- π **Speech Recognition (Whisper)** β Real-time, offline transcription on mobile.
|
| 31 |
+
- π¦· **Dental AI Diagnostics** β Instant tooth condition analysis via smartphone camera.
|
| 32 |
+
- ποΈ **Sports AI** β On-device golf swing analytics.
|
| 33 |
+
- π€ **On-Device LLMs** β Chat & reasoning models running entirely offline.
|
| 34 |
+
|
| 35 |
+
---
|
| 36 |
+
|
| 37 |
+
## π Benchmarks
|
| 38 |
+
|
| 39 |
+
| Device | Task | Cloud GPU | On-Device NPU | Speedup |
|
| 40 |
+
|--------|------|-----------|---------------|---------|
|
| 41 |
+
| iPhone 16 Pro | Whisper-Small | 1.2s | 0.07s | **Γ17** |
|
| 42 |
+
| Galaxy S24 Ultra | LLaMA-3-8B | 2.4s/token | 0.09s/token | **Γ26** |
|
| 43 |
+
|
| 44 |
+
[π See more benchmarks Β»](https://mlange.zetic.ai)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
### YOLOv8n β NPU Latency (ms)
|
| 48 |
+
| Index | Device | Manufacturer | CPU | GPU | CPU/GPU | NPU |
|
| 49 |
+
|-------|--------|--------------|-----|-----|---------|-----|
|
| 50 |
+
| 1 | Google Pixel 7 Pro | Google | 205.43 | - | 404.93 | - |
|
| 51 |
+
| 2 | Apple iPhone 16 | Apple | 126.27 | - | 8.98 | **2.03** |
|
| 52 |
+
| 3 | Apple iPhone 16 Pro | Apple | 122.23 | - | 7.54 | **1.69** |
|
| 53 |
+
| 4 | Apple iPad (2022) | Apple | 167.97 | - | 19.26 | **4.74** |
|
| 54 |
+
| 5 | Apple iPhone 14 | Apple | 133.21 | - | 17.13 | **4.68** |
|
| 55 |
+
| ... | ... | ... | ... | ... | ... | ... |
|
| 56 |
+
|
| 57 |
---
|
| 58 |
+
|
| 59 |
+
### Whisper-tiny-encoder β NPU Latency (ms)
|
| 60 |
+
| Index | Device | Manufacturer | CPU | GPU | CPU/GPU | NPU |
|
| 61 |
+
|-------|--------|--------------|-----|-----|---------|-----|
|
| 62 |
+
| 1 | Apple iPhone 16 | Apple | 552.13 | - | 44.49 | **19.01** |
|
| 63 |
+
| 2 | Apple iPhone 16 Pro | Apple | 540.04 | - | 42.43 | **18.15** |
|
| 64 |
+
| 3 | Apple iPhone 16 Pro Max | Apple | 526.12 | - | 40.72 | **17.92** |
|
| 65 |
+
| 4 | Apple iPhone 15 | Apple | 605.12 | - | 48.88 | **18.23** |
|
| 66 |
+
| 5 | Apple iPhone 15 Plus | Apple | 632.67 | - | 49.20 | **23.35** |
|
| 67 |
+
| ... | ... | ... | ... | ... | ... | ... |
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
- **You can get runtime source code and benchmark report of your model with [ZETIC.MLange](https://mlange.zetic.ai)**
|
| 71 |
+
|
| 72 |
+
---
|
| 73 |
+
|
| 74 |
+
## π¨π»βπ» Plug-and-play To Your App
|
| 75 |
+
|
| 76 |
+
- The runtime SDK is also provided for your AI model with ZETIC.MLange
|
| 77 |
+
|
| 78 |
+
- **iOS Integration** (Swift)
|
| 79 |
+
```
|
| 80 |
+
import ZeticMLange
|
| 81 |
+
|
| 82 |
+
// Load NPU-optimized model
|
| 83 |
+
let model = try MLangeModel.load(from: "whisper_small_npu.mlange")
|
| 84 |
+
|
| 85 |
+
// Prepare input
|
| 86 |
+
let inputAudio = loadAudioTensor("sample.wav") // implement your loader
|
| 87 |
+
|
| 88 |
+
// Run inference
|
| 89 |
+
let output = try model.run(input: inputAudio)
|
| 90 |
+
|
| 91 |
+
print("Transcription: \(output.text)")
|
| 92 |
+
```
|
| 93 |
+
|
| 94 |
+
- **Android Integration** (Kotlin, Java)
|
| 95 |
+
```
|
| 96 |
+
import ai.zetic.mlange.MLangeModel
|
| 97 |
+
|
| 98 |
+
// Load packaged NPU runtime
|
| 99 |
+
val model = MLangeModel.load(context, "llama3_small_npu.mlange")
|
| 100 |
+
|
| 101 |
+
// Run text generation
|
| 102 |
+
val prompt = "Tell me a short story about a fox."
|
| 103 |
+
val output = model.run(prompt)
|
| 104 |
+
|
| 105 |
+
println("π¦ AI says: $output")
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
## π₯ Try It Now
|
| 110 |
+
|
| 111 |
+
- **MLange Dashboard**: [https://mlange.zetic.ai](https://mlange.zetic.ai)
|
| 112 |
+
- **Demo Apps**: [App Store](https://apps.apple.com/app/zeticapp/id6739862746) / [Google Play](https://play.google.com/store/apps/details?id=com.zeticai.zeticapp)
|
| 113 |
+
|
| 114 |
+
---
|
| 115 |
+
|
| 116 |
+
## π§ Supported Targets
|
| 117 |
+
|
| 118 |
+
- **OS**: Android, iOS, Linux
|
| 119 |
+
- **NPUs**: MediaTek, Qualcomm, Apple (more coming)
|
| 120 |
+
- **Frameworks In**: PyTorch, ONNX, TFLite
|
| 121 |
+
- **Artifacts Out**: NPU-optimized runtime libraries + SDK bindings (Kotlin, Java, Swift, Flutter, React Native)
|
| 122 |
+
|
| 123 |
+
## π¬ Contact Us
|
| 124 |
+
|
| 125 |
+
- **Website**: [https://zetic.ai](https://zetic.ai)
|
| 126 |
+
- **Email**: [email protected]
|
| 127 |
+
- **LinkedIn**: [linkedin.com/company/zetic-ai](https://linkedin.com/company/zetic-ai)
|
| 128 |
+
|
| 129 |
---
|
| 130 |
|
| 131 |
+
**ZETIC.ai** β AI for All, Anytime, Anywhere.
|
| 132 |
+
Run your AI where it matters: **on the device.**
|