Spaces:
Running
on
Zero
Running
on
Zero
import tempfile | |
import gradio as gr | |
import imageio | |
import numpy as np | |
import spaces | |
import torch | |
import torchvision | |
from einops import rearrange | |
from PIL import Image | |
# lables | |
labels_k = [ | |
'yaw1', | |
'yaw2', | |
'pitch', | |
'roll1', | |
'roll2', | |
'neck', | |
'pout', | |
'open->close', | |
'"O" mouth', | |
'smile', | |
'close->open', | |
'eyebrows', | |
'eyeballs1', | |
'eyeballs2', | |
] | |
labels_v = [ | |
37, 39, 28, 15, 33, 31, | |
6, 25, 16, 19, | |
13, 24, 17, 26 | |
] | |
def load_image(img, size): | |
# img = Image.open(filename).convert('RGB') | |
if not isinstance(img, np.ndarray): | |
img = Image.open(img).convert('RGB') | |
img = img.resize((size, size)) | |
img = np.asarray(img) | |
img = np.transpose(img, (2, 0, 1)) # 3 x 256 x 256 | |
return img / 255.0 | |
def img_preprocessing(img_path, size): | |
img = load_image(img_path, size) # [0, 1] | |
img = torch.from_numpy(img).unsqueeze(0).float() # [0, 1] | |
imgs_norm = (img - 0.5) * 2.0 # [-1, 1] | |
return imgs_norm | |
def resize(img, size): | |
transform = torchvision.transforms.Compose([ | |
torchvision.transforms.Resize((size, size), antialias=True), | |
]) | |
return transform(img) | |
def resize_back(img, w, h): | |
transform = torchvision.transforms.Compose([ | |
torchvision.transforms.Resize((h, w), antialias=True), | |
]) | |
return transform(img) | |
def vid_preprocessing(vid_path, size): | |
vid_dict = torchvision.io.read_video(vid_path, pts_unit='sec') | |
vid = vid_dict[0].permute(0, 3, 1, 2).unsqueeze(0) # btchw | |
_,_,_,h,w = vid.size() | |
fps = vid_dict[2]['video_fps'] | |
vid_norm = (vid / 255.0 - 0.5) * 2.0 # [-1, 1] | |
vid_norm = torch.cat([ | |
resize(vid_norm[:, i, :, :, :], size).unsqueeze(1) for i in range(vid.size(1)) | |
], dim=1) | |
return vid_norm, fps, w, h | |
def img_denorm(img): | |
img = img.clamp(-1, 1).cpu() | |
img = (img - img.min()) / (img.max() - img.min()) | |
return img | |
def vid_denorm(vid): | |
vid = vid.clamp(-1, 1).cpu() | |
vid = (vid - vid.min()) / (vid.max() - vid.min()) | |
return vid | |
def img_postprocessing(image, w, h): | |
image = resize_back(image, w, h) | |
image = image.permute(0, 2, 3, 1) | |
edited_image = img_denorm(image) | |
img_output = (edited_image[0].numpy() * 255).astype(np.uint8) | |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file: | |
imageio.imwrite(temp_file.name, img_output, quality=6) | |
return temp_file.name | |
def vid_all_save(vid_d, vid_a, w, h, fps): | |
b,t,c,_,_ = vid_d.size() | |
vid_d_batch = resize_back(rearrange(vid_d, "b t c h w -> (b t) c h w"), w, h) | |
vid_a_batch = resize_back(rearrange(vid_a, "b c t h w -> (b t) c h w"), w, h) | |
vid_d = rearrange(vid_d_batch, "(b t) c h w -> b t h w c", b=b) # B T H W C | |
vid_a = rearrange(vid_a_batch, "(b t) c h w -> b t h w c", b=b) # B T H W C | |
vid_all = torch.cat([vid_d, vid_a], dim=3) | |
vid_a_np = (vid_denorm(vid_a[0]).numpy() * 255).astype('uint8') | |
vid_all_np = (vid_denorm(vid_all[0]).numpy() * 255).astype('uint8') | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as output_path: | |
imageio.mimwrite(output_path.name, vid_a_np, fps=fps, codec='libx264', quality=8) | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as output_all_path: | |
imageio.mimwrite(output_all_path.name, vid_all_np, fps=fps, codec='libx264', quality=8) | |
return output_path.name, output_all_path.name | |
def vid_edit(gen, chunk_size, device): | |
def edit_img(video, *selected_s): | |
vid_target_tensor, fps, w, h = vid_preprocessing(video, 512) | |
video_target_tensor = vid_target_tensor.to(device) | |
image_tensor = video_target_tensor[:,0,:,:,:] | |
edited_image_tensor = gen.edit_img(image_tensor, labels_v, selected_s) | |
# de-norm | |
edited_image = img_postprocessing(edited_image_tensor, w, h) | |
return edited_image | |
def edit_vid(video, *selected_s): | |
video_target_tensor, fps, w, h = vid_preprocessing(video, 512) | |
video_target_tensor = video_target_tensor.to(device) | |
edited_video_tensor = gen.edit_vid_batch(video_target_tensor, labels_v, selected_s, chunk_size) | |
edited_image_tensor = edited_video_tensor[:,:,0,:,:] | |
# de-norm | |
animated_video, animated_all_video = vid_all_save(video_target_tensor, edited_video_tensor, w, h, fps) | |
edited_image = img_postprocessing(edited_image_tensor, w, h) | |
return edited_image, animated_video, animated_all_video | |
def clear_media(): | |
return None, None, None, *([0] * len(labels_k)) | |
with gr.Tab("Video Editing"): | |
inputs_c = [] | |
inputs_s = [] | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Row(): | |
with gr.Accordion(open=True, label="Video"): | |
video_input = gr.Video(width=512,elem_id="input_vid") # , height=550) | |
gr.Examples( | |
examples=[ | |
["./data/driving/driving1.mp4"], | |
["./data/driving/driving2.mp4"], | |
["./data/driving/driving4.mp4"], | |
#["./data/driving/driving5.mp4"], | |
#["./data/driving/driving6.mp4"], | |
#["./data/driving/driving7.mp4"], | |
["./data/driving/driving3.mp4"], | |
["./data/driving/driving8.mp4"], | |
["./data/driving/driving9.mp4"], | |
], | |
inputs=[video_input], | |
visible=True, | |
) | |
with gr.Column(scale=2): | |
with gr.Row(): | |
with gr.Accordion(open=True, label="Edited First Frame"): | |
image_output = gr.Image(label="Image", elem_id="output_img", type='numpy', interactive=False, width=512) | |
with gr.Accordion(open=True, label="Edited Video"): | |
video_output = gr.Video(label="Video", elem_id="output_vid", width=512) | |
with gr.Row(): | |
with gr.Accordion(open=True, label="Original & Edited Videos"): | |
video_all_output = gr.Video(label="Videos", elem_id="output_vid_all") | |
with gr.Column(scale=1): | |
with gr.Accordion("Control Panel", open=True): | |
with gr.Tab("Head"): | |
with gr.Row(): | |
for k in labels_k[:3]: | |
slider = gr.Slider(minimum=-1.0, maximum=0.5, value=0, label=k, elem_id="slider_"+k) | |
inputs_s.append(slider) | |
with gr.Row(): | |
for k in labels_k[3:6]: | |
slider = gr.Slider(minimum=-0.5, maximum=0.5, value=0, label=k, elem_id="slider_"+k) | |
inputs_s.append(slider) | |
with gr.Tab("Mouth"): | |
with gr.Row(): | |
for k in labels_k[6:8]: | |
slider = gr.Slider(minimum=-0.4, maximum=0.4, value=0, label=k, elem_id="slider_"+k) | |
inputs_s.append(slider) | |
with gr.Row(): | |
for k in labels_k[8:10]: | |
slider = gr.Slider(minimum=-0.4, maximum=0.4, value=0, label=k, elem_id="slider_"+k) | |
inputs_s.append(slider) | |
with gr.Tab("Eyes"): | |
with gr.Row(): | |
for k in labels_k[10:12]: | |
slider = gr.Slider(minimum=-0.4, maximum=0.4, value=0, label=k, elem_id="slider_"+k) | |
inputs_s.append(slider) | |
with gr.Row(): | |
for k in labels_k[12:14]: | |
slider = gr.Slider(minimum=-0.2, maximum=0.2, value=0, label=k, elem_id="slider_"+k) | |
inputs_s.append(slider) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Row(): # Buttons now within a single Row | |
edit_btn = gr.Button("Edit",elem_id="button_edit") | |
clear_btn = gr.Button("Clear",elem_id="button_clear") | |
with gr.Row(): | |
animate_btn = gr.Button("Generate",elem_id="button_generate") | |
edit_btn.click( | |
fn=edit_img, | |
inputs=[video_input] + inputs_s, | |
outputs=[image_output], | |
show_progress=True | |
) | |
animate_btn.click( | |
fn=edit_vid, | |
inputs=[video_input] + inputs_s, # [image_input, video_input] + inputs_s, | |
outputs=[image_output, video_output, video_all_output], | |
) | |
clear_btn.click( | |
fn=clear_media, | |
outputs=[image_output, video_output, video_all_output] + inputs_s | |
) | |
gr.Examples( | |
examples=[ | |
['./data/driving/driving1.mp4', 0.5, 0.5, 0, 0, 0, 0, 0, | |
0, 0, 0, 0, 0, 0, 0], | |
['./data/driving/driving2.mp4', 0.5, 0.5, 0, 0, 0, 0, 0, 0, 0, | |
0, 0, 0, 0, 0], | |
['./data/driving/driving1.mp4', 0, 0, 0, 0, 0, 0, 0, | |
0, 0, 0, 0, -0.3, 0, 0], | |
['./data/driving/driving3.mp4', -0.6, 0, 0, 0, 0, 0, 0, | |
0, 0, 0, 0, 0, 0, 0], | |
['./data/driving/driving9.mp4', 0, 0, 0, 0, 0, 0, 0, | |
0, 0, 0, 0, 0, -0.1, 0.07], | |
], | |
fn=edit_vid, | |
inputs=[video_input] + inputs_s, | |
outputs=[image_output, video_output, video_all_output], | |
) | |