LIA-X / gradio_tabs /vid_edit.py
YaohuiW's picture
Update gradio_tabs/vid_edit.py
1025828 verified
import tempfile
import gradio as gr
import imageio
import numpy as np
import spaces
import torch
import torchvision
from einops import rearrange
from PIL import Image
# lables
labels_k = [
'yaw1',
'yaw2',
'pitch',
'roll1',
'roll2',
'neck',
'pout',
'open->close',
'"O" mouth',
'smile',
'close->open',
'eyebrows',
'eyeballs1',
'eyeballs2',
]
labels_v = [
37, 39, 28, 15, 33, 31,
6, 25, 16, 19,
13, 24, 17, 26
]
def load_image(img, size):
# img = Image.open(filename).convert('RGB')
if not isinstance(img, np.ndarray):
img = Image.open(img).convert('RGB')
img = img.resize((size, size))
img = np.asarray(img)
img = np.transpose(img, (2, 0, 1)) # 3 x 256 x 256
return img / 255.0
def img_preprocessing(img_path, size):
img = load_image(img_path, size) # [0, 1]
img = torch.from_numpy(img).unsqueeze(0).float() # [0, 1]
imgs_norm = (img - 0.5) * 2.0 # [-1, 1]
return imgs_norm
def resize(img, size):
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((size, size), antialias=True),
])
return transform(img)
def resize_back(img, w, h):
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((h, w), antialias=True),
])
return transform(img)
def vid_preprocessing(vid_path, size):
vid_dict = torchvision.io.read_video(vid_path, pts_unit='sec')
vid = vid_dict[0].permute(0, 3, 1, 2).unsqueeze(0) # btchw
_,_,_,h,w = vid.size()
fps = vid_dict[2]['video_fps']
vid_norm = (vid / 255.0 - 0.5) * 2.0 # [-1, 1]
vid_norm = torch.cat([
resize(vid_norm[:, i, :, :, :], size).unsqueeze(1) for i in range(vid.size(1))
], dim=1)
return vid_norm, fps, w, h
def img_denorm(img):
img = img.clamp(-1, 1).cpu()
img = (img - img.min()) / (img.max() - img.min())
return img
def vid_denorm(vid):
vid = vid.clamp(-1, 1).cpu()
vid = (vid - vid.min()) / (vid.max() - vid.min())
return vid
def img_postprocessing(image, w, h):
image = resize_back(image, w, h)
image = image.permute(0, 2, 3, 1)
edited_image = img_denorm(image)
img_output = (edited_image[0].numpy() * 255).astype(np.uint8)
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
imageio.imwrite(temp_file.name, img_output, quality=6)
return temp_file.name
def vid_all_save(vid_d, vid_a, w, h, fps):
b,t,c,_,_ = vid_d.size()
vid_d_batch = resize_back(rearrange(vid_d, "b t c h w -> (b t) c h w"), w, h)
vid_a_batch = resize_back(rearrange(vid_a, "b c t h w -> (b t) c h w"), w, h)
vid_d = rearrange(vid_d_batch, "(b t) c h w -> b t h w c", b=b) # B T H W C
vid_a = rearrange(vid_a_batch, "(b t) c h w -> b t h w c", b=b) # B T H W C
vid_all = torch.cat([vid_d, vid_a], dim=3)
vid_a_np = (vid_denorm(vid_a[0]).numpy() * 255).astype('uint8')
vid_all_np = (vid_denorm(vid_all[0]).numpy() * 255).astype('uint8')
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as output_path:
imageio.mimwrite(output_path.name, vid_a_np, fps=fps, codec='libx264', quality=8)
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as output_all_path:
imageio.mimwrite(output_all_path.name, vid_all_np, fps=fps, codec='libx264', quality=8)
return output_path.name, output_all_path.name
def vid_edit(gen, chunk_size, device):
@spaces.GPU
@torch.no_grad()
def edit_img(video, *selected_s):
vid_target_tensor, fps, w, h = vid_preprocessing(video, 512)
video_target_tensor = vid_target_tensor.to(device)
image_tensor = video_target_tensor[:,0,:,:,:]
edited_image_tensor = gen.edit_img(image_tensor, labels_v, selected_s)
# de-norm
edited_image = img_postprocessing(edited_image_tensor, w, h)
return edited_image
@spaces.GPU
@torch.no_grad()
def edit_vid(video, *selected_s):
video_target_tensor, fps, w, h = vid_preprocessing(video, 512)
video_target_tensor = video_target_tensor.to(device)
edited_video_tensor = gen.edit_vid_batch(video_target_tensor, labels_v, selected_s, chunk_size)
edited_image_tensor = edited_video_tensor[:,:,0,:,:]
# de-norm
animated_video, animated_all_video = vid_all_save(video_target_tensor, edited_video_tensor, w, h, fps)
edited_image = img_postprocessing(edited_image_tensor, w, h)
return edited_image, animated_video, animated_all_video
def clear_media():
return None, None, None, *([0] * len(labels_k))
with gr.Tab("Video Editing"):
inputs_c = []
inputs_s = []
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
with gr.Accordion(open=True, label="Video"):
video_input = gr.Video(width=512,elem_id="input_vid") # , height=550)
gr.Examples(
examples=[
["./data/driving/driving1.mp4"],
["./data/driving/driving2.mp4"],
["./data/driving/driving4.mp4"],
#["./data/driving/driving5.mp4"],
#["./data/driving/driving6.mp4"],
#["./data/driving/driving7.mp4"],
["./data/driving/driving3.mp4"],
["./data/driving/driving8.mp4"],
["./data/driving/driving9.mp4"],
],
inputs=[video_input],
visible=True,
)
with gr.Column(scale=2):
with gr.Row():
with gr.Accordion(open=True, label="Edited First Frame"):
image_output = gr.Image(label="Image", elem_id="output_img", type='numpy', interactive=False, width=512)
with gr.Accordion(open=True, label="Edited Video"):
video_output = gr.Video(label="Video", elem_id="output_vid", width=512)
with gr.Row():
with gr.Accordion(open=True, label="Original & Edited Videos"):
video_all_output = gr.Video(label="Videos", elem_id="output_vid_all")
with gr.Column(scale=1):
with gr.Accordion("Control Panel", open=True):
with gr.Tab("Head"):
with gr.Row():
for k in labels_k[:3]:
slider = gr.Slider(minimum=-1.0, maximum=0.5, value=0, label=k, elem_id="slider_"+k)
inputs_s.append(slider)
with gr.Row():
for k in labels_k[3:6]:
slider = gr.Slider(minimum=-0.5, maximum=0.5, value=0, label=k, elem_id="slider_"+k)
inputs_s.append(slider)
with gr.Tab("Mouth"):
with gr.Row():
for k in labels_k[6:8]:
slider = gr.Slider(minimum=-0.4, maximum=0.4, value=0, label=k, elem_id="slider_"+k)
inputs_s.append(slider)
with gr.Row():
for k in labels_k[8:10]:
slider = gr.Slider(minimum=-0.4, maximum=0.4, value=0, label=k, elem_id="slider_"+k)
inputs_s.append(slider)
with gr.Tab("Eyes"):
with gr.Row():
for k in labels_k[10:12]:
slider = gr.Slider(minimum=-0.4, maximum=0.4, value=0, label=k, elem_id="slider_"+k)
inputs_s.append(slider)
with gr.Row():
for k in labels_k[12:14]:
slider = gr.Slider(minimum=-0.2, maximum=0.2, value=0, label=k, elem_id="slider_"+k)
inputs_s.append(slider)
with gr.Row():
with gr.Column(scale=1):
with gr.Row(): # Buttons now within a single Row
edit_btn = gr.Button("Edit",elem_id="button_edit")
clear_btn = gr.Button("Clear",elem_id="button_clear")
with gr.Row():
animate_btn = gr.Button("Generate",elem_id="button_generate")
edit_btn.click(
fn=edit_img,
inputs=[video_input] + inputs_s,
outputs=[image_output],
show_progress=True
)
animate_btn.click(
fn=edit_vid,
inputs=[video_input] + inputs_s, # [image_input, video_input] + inputs_s,
outputs=[image_output, video_output, video_all_output],
)
clear_btn.click(
fn=clear_media,
outputs=[image_output, video_output, video_all_output] + inputs_s
)
gr.Examples(
examples=[
['./data/driving/driving1.mp4', 0.5, 0.5, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0],
['./data/driving/driving2.mp4', 0.5, 0.5, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0],
['./data/driving/driving1.mp4', 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, -0.3, 0, 0],
['./data/driving/driving3.mp4', -0.6, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0],
['./data/driving/driving9.mp4', 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, -0.1, 0.07],
],
fn=edit_vid,
inputs=[video_input] + inputs_s,
outputs=[image_output, video_output, video_all_output],
)