File size: 8,151 Bytes
1672673
 
c42db24
1672673
 
 
c42db24
 
 
1672673
c42db24
 
 
 
 
 
 
 
 
 
 
 
 
92a3897
c42db24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1025828
 
 
 
 
c42db24
 
1025828
c42db24
 
 
1025828
c42db24
 
 
1025828
c42db24
 
6b0ef0f
1025828
 
 
 
c42db24
 
 
92a3897
1025828
 
 
6b0ef0f
1025828
 
92a3897
c42db24
 
1025828
 
c42db24
 
 
1025828
 
 
c42db24
92a3897
c42db24
 
 
1025828
c42db24
 
 
 
 
 
1025828
c42db24
 
 
 
 
92a3897
1025828
 
 
 
c42db24
1025828
 
 
c42db24
 
92a3897
c42db24
1025828
 
 
 
 
 
 
c42db24
1025828
 
c42db24
1672673
 
c42db24
1672673
 
 
 
c42db24
38266f6
0cced99
1025828
1672673
1025828
02aaa2b
c42db24
1025828
 
 
c42db24
1025828
c42db24
02aaa2b
92a3897
c42db24
02aaa2b
c42db24
1672673
1025828
02aaa2b
c42db24
92a3897
02aaa2b
c42db24
1025828
 
c42db24
02aaa2b
f01681c
92a3897
c42db24
1025828
 
c42db24
02aaa2b
 
f2c0389
c42db24
 
 
 
 
 
 
 
 
f2c0389
c42db24
 
 
 
 
 
 
 
 
38266f6
 
c42db24
 
 
 
 
 
 
 
 
f2c0389
c42db24
 
f2c0389
 
c42db24
 
f2c0389
 
c42db24
1025828
c42db24
 
 
f2c0389
c42db24
 
 
f2c0389
c42db24
 
 
 
 
f2c0389
c42db24
 
 
f2c0389
c42db24
 
 
 
 
f2c0389
c42db24
 
 
f2c0389
c42db24
 
 
 
 
1025828
6b0ef0f
1025828
 
 
 
 
 
 
 
 
6b0ef0f
c42db24
 
 
dcdcc37
c42db24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38266f6
c42db24
 
1025828
0619653
1025828
c42db24
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import tempfile

import gradio as gr
import imageio
import numpy as np
import spaces
import torch
import torchvision
from einops import rearrange
from PIL import Image

# lables
labels_k = [
	'yaw1',
	'yaw2',
	'pitch',
	'roll1',
	'roll2',
	'neck',

	'pout',
	'open->close',
	'"O" mouth',
	'smile',

	'close->open',
	'eyebrows',
	'eyeballs1',
	'eyeballs2',

]

labels_v = [
	37, 39, 28, 15, 33, 31,
	6, 25, 16, 19,
	13, 24, 17, 26
]


def load_image(img, size):
	# img = Image.open(filename).convert('RGB')
	if not isinstance(img, np.ndarray):
		img = Image.open(img).convert('RGB')
		img = img.resize((size, size))
		img = np.asarray(img)
	img = np.transpose(img, (2, 0, 1))	# 3 x 256 x 256

	return img / 255.0


def img_preprocessing(img_path, size):
	img = load_image(img_path, size)  # [0, 1]
	img = torch.from_numpy(img).unsqueeze(0).float()  # [0, 1]
	imgs_norm = (img - 0.5) * 2.0  # [-1, 1]

	return imgs_norm


def resize(img, size):
	transform = torchvision.transforms.Compose([
		torchvision.transforms.Resize((size, size), antialias=True),
	])

	return transform(img)


def resize_back(img, w, h):
	transform = torchvision.transforms.Compose([
		torchvision.transforms.Resize((h, w), antialias=True),
	])

	return transform(img)
    

def vid_preprocessing(vid_path, size):
	vid_dict = torchvision.io.read_video(vid_path, pts_unit='sec')
	vid = vid_dict[0].permute(0, 3, 1, 2).unsqueeze(0)	# btchw
	_,_,_,h,w = vid.size()
	fps = vid_dict[2]['video_fps']
	vid_norm = (vid / 255.0 - 0.5) * 2.0  # [-1, 1]

	vid_norm = torch.cat([
		resize(vid_norm[:, i, :, :, :], size).unsqueeze(1) for i in range(vid.size(1))
	], dim=1)

	return vid_norm, fps, w, h


def img_denorm(img):
	img = img.clamp(-1, 1).cpu()
	img = (img - img.min()) / (img.max() - img.min())

	return img


def vid_denorm(vid):
	vid = vid.clamp(-1, 1).cpu()
	vid = (vid - vid.min()) / (vid.max() - vid.min())

	return vid


def img_postprocessing(image, w, h):
	image = resize_back(image, w, h)
	image = image.permute(0, 2, 3, 1)
	edited_image = img_denorm(image)
	img_output = (edited_image[0].numpy() * 255).astype(np.uint8)

	with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
		imageio.imwrite(temp_file.name, img_output, quality=6)
		return temp_file.name


def vid_all_save(vid_d, vid_a, w, h, fps):

	b,t,c,_,_ = vid_d.size()
	vid_d_batch = resize_back(rearrange(vid_d, "b t c h w -> (b t) c h w"), w, h)
	vid_a_batch = resize_back(rearrange(vid_a, "b c t h w -> (b t) c h w"), w, h)
	
	vid_d = rearrange(vid_d_batch, "(b t) c h w -> b t h w c", b=b) # B T H W C
	vid_a = rearrange(vid_a_batch, "(b t) c h w -> b t h w c", b=b) # B T H W C	
	vid_all = torch.cat([vid_d, vid_a], dim=3)

	vid_a_np = (vid_denorm(vid_a[0]).numpy() * 255).astype('uint8')
	vid_all_np = (vid_denorm(vid_all[0]).numpy() * 255).astype('uint8')

	with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as output_path:
		imageio.mimwrite(output_path.name, vid_a_np, fps=fps, codec='libx264', quality=8)

	with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as output_all_path:
		imageio.mimwrite(output_all_path.name, vid_all_np, fps=fps, codec='libx264', quality=8)

	return output_path.name, output_all_path.name


def vid_edit(gen, chunk_size, device):
    
	@spaces.GPU
	@torch.no_grad()
	def edit_img(video, *selected_s):

		vid_target_tensor, fps, w, h = vid_preprocessing(video, 512)
		video_target_tensor = vid_target_tensor.to(device)
		image_tensor = video_target_tensor[:,0,:,:,:]

		edited_image_tensor = gen.edit_img(image_tensor, labels_v, selected_s)

		# de-norm
		edited_image = img_postprocessing(edited_image_tensor, w, h)

		return edited_image

	@spaces.GPU
	@torch.no_grad()
	def edit_vid(video, *selected_s):

		video_target_tensor, fps, w, h = vid_preprocessing(video, 512)
		video_target_tensor = video_target_tensor.to(device)

		edited_video_tensor = gen.edit_vid_batch(video_target_tensor, labels_v, selected_s, chunk_size)
		edited_image_tensor = edited_video_tensor[:,:,0,:,:]       

		# de-norm
		animated_video, animated_all_video = vid_all_save(video_target_tensor, edited_video_tensor, w, h, fps)
		edited_image = img_postprocessing(edited_image_tensor, w, h)

		return edited_image, animated_video, animated_all_video


	def clear_media():
		return None, None, None, *([0] * len(labels_k))
   
	with gr.Tab("Video Editing"):

		inputs_c = []
		inputs_s = []

		with gr.Row():
			with gr.Column(scale=1):
				with gr.Row():
					with gr.Accordion(open=True, label="Video"):
						video_input = gr.Video(width=512,elem_id="input_vid")  # , height=550)
						gr.Examples(
							examples=[
								["./data/driving/driving1.mp4"],
								["./data/driving/driving2.mp4"],
								["./data/driving/driving4.mp4"],
								#["./data/driving/driving5.mp4"],
								#["./data/driving/driving6.mp4"],
								#["./data/driving/driving7.mp4"],
								["./data/driving/driving3.mp4"],
								["./data/driving/driving8.mp4"],
								["./data/driving/driving9.mp4"],
							],
							inputs=[video_input],
							visible=True,
						)

			with gr.Column(scale=2):

				with gr.Row():
					with gr.Accordion(open=True, label="Edited First Frame"):
						image_output = gr.Image(label="Image", elem_id="output_img", type='numpy', interactive=False, width=512)

					with gr.Accordion(open=True, label="Edited Video"):
						video_output = gr.Video(label="Video", elem_id="output_vid", width=512)

				with gr.Row():
					with gr.Accordion(open=True, label="Original & Edited Videos"):
						video_all_output = gr.Video(label="Videos", elem_id="output_vid_all")

			with gr.Column(scale=1):
				with gr.Accordion("Control Panel", open=True):
					with gr.Tab("Head"):
						with gr.Row():
							for k in labels_k[:3]:
								slider = gr.Slider(minimum=-1.0, maximum=0.5, value=0, label=k, elem_id="slider_"+k)
								inputs_s.append(slider)
						with gr.Row():
							for k in labels_k[3:6]:
								slider = gr.Slider(minimum=-0.5, maximum=0.5, value=0, label=k, elem_id="slider_"+k)
								inputs_s.append(slider)

					with gr.Tab("Mouth"):
						with gr.Row():
							for k in labels_k[6:8]:
								slider = gr.Slider(minimum=-0.4, maximum=0.4, value=0, label=k, elem_id="slider_"+k)
								inputs_s.append(slider)
						with gr.Row():
							for k in labels_k[8:10]:
								slider = gr.Slider(minimum=-0.4, maximum=0.4, value=0, label=k, elem_id="slider_"+k)
								inputs_s.append(slider)

					with gr.Tab("Eyes"):
						with gr.Row():
							for k in labels_k[10:12]:
								slider = gr.Slider(minimum=-0.4, maximum=0.4, value=0, label=k, elem_id="slider_"+k)
								inputs_s.append(slider)
						with gr.Row():
							for k in labels_k[12:14]:
								slider = gr.Slider(minimum=-0.2, maximum=0.2, value=0, label=k, elem_id="slider_"+k)
								inputs_s.append(slider)

				with gr.Row():
					with gr.Column(scale=1):
						with gr.Row():	# Buttons now within a single Row
							edit_btn = gr.Button("Edit",elem_id="button_edit")
							clear_btn = gr.Button("Clear",elem_id="button_clear")
						with gr.Row():
							animate_btn = gr.Button("Generate",elem_id="button_generate")

		edit_btn.click(
			fn=edit_img,
			inputs=[video_input] + inputs_s,
			outputs=[image_output],
			show_progress=True
		)

		animate_btn.click(
			fn=edit_vid,
			inputs=[video_input] + inputs_s,  # [image_input, video_input] + inputs_s,
			outputs=[image_output, video_output, video_all_output],
		)

		clear_btn.click(
			fn=clear_media,
			outputs=[image_output, video_output, video_all_output] + inputs_s
		)

		gr.Examples(
			examples=[
				['./data/driving/driving1.mp4', 0.5, 0.5, 0, 0, 0, 0, 0,
				 0, 0, 0, 0, 0, 0, 0],
				['./data/driving/driving2.mp4', 0.5, 0.5, 0, 0, 0, 0, 0, 0, 0,
				 0, 0, 0, 0, 0],
				['./data/driving/driving1.mp4', 0, 0, 0, 0, 0, 0, 0,
				 0, 0, 0, 0, -0.3, 0, 0],
				['./data/driving/driving3.mp4', -0.6, 0, 0, 0, 0, 0, 0,
				 0, 0, 0, 0, 0, 0, 0],
				['./data/driving/driving9.mp4', 0, 0, 0, 0, 0, 0, 0,
				 0, 0, 0, 0, 0, -0.1, 0.07],
			],
            fn=edit_vid,
			inputs=[video_input] + inputs_s,
            outputs=[image_output, video_output, video_all_output],
		)