Spaces:
Running
on
Zero
Running
on
Zero
update
Browse files- app.py +1 -1
- assets/instruction.md +3 -3
- gradio_tabs/animation.py +16 -36
- gradio_tabs/img_edit.py +2 -14
- gradio_tabs/vid_edit.py +8 -13
app.py
CHANGED
@@ -17,7 +17,7 @@ ckpt_path = hf_hub_download(repo_id="YaohuiW/LIA-X", filename="lia-x.pt")
|
|
17 |
gen.load_state_dict(torch.load(ckpt_path, weights_only=True))
|
18 |
gen.eval()
|
19 |
|
20 |
-
chunk_size=
|
21 |
|
22 |
def load_file(path):
|
23 |
|
|
|
17 |
gen.load_state_dict(torch.load(ckpt_path, weights_only=True))
|
18 |
gen.eval()
|
19 |
|
20 |
+
chunk_size=30
|
21 |
|
22 |
def load_file(path):
|
23 |
|
assets/instruction.md
CHANGED
@@ -3,18 +3,18 @@
|
|
3 |
* **Image Animation**
|
4 |
|
5 |
- Upload `Source Image` and `Driving Video`
|
6 |
-
- Using sliders in the `Control Panel` to edit image
|
7 |
- Use `Animate` button to obtain `Animated Video`
|
8 |
|
9 |
* **Image Editing**
|
10 |
|
11 |
- Upload `Source Image`
|
12 |
-
- Using sliders in the `Control Panel` to edit image
|
13 |
|
14 |
* **Video Editing**
|
15 |
|
16 |
- Upload `Video`
|
17 |
-
- Using sliders in the `Control Panel` to edit image
|
18 |
- Use `Generate` button to obtain `Edited Video`
|
19 |
|
20 |
**NOTE: we recommend to crop both input images and videos using provided [tools](https://github.com/wyhsirius/LIA-X/tree/main) for better results**
|
|
|
3 |
* **Image Animation**
|
4 |
|
5 |
- Upload `Source Image` and `Driving Video`
|
6 |
+
- Using `sliders` in the `Control Panel` to edit image
|
7 |
- Use `Animate` button to obtain `Animated Video`
|
8 |
|
9 |
* **Image Editing**
|
10 |
|
11 |
- Upload `Source Image`
|
12 |
+
- Using `sliders` in the `Control Panel` to edit image
|
13 |
|
14 |
* **Video Editing**
|
15 |
|
16 |
- Upload `Video`
|
17 |
+
- Using `sliders` in the `Control Panel` to edit image
|
18 |
- Use `Generate` button to obtain `Edited Video`
|
19 |
|
20 |
**NOTE: we recommend to crop both input images and videos using provided [tools](https://github.com/wyhsirius/LIA-X/tree/main) for better results**
|
gradio_tabs/animation.py
CHANGED
@@ -90,10 +90,6 @@ def vid_preprocessing(vid_path, size):
|
|
90 |
vid = vid_dict[0].permute(0, 3, 1, 2) # tchw
|
91 |
fps = vid_dict[2]['video_fps']
|
92 |
vid_norm = (vid / 255.0 - 0.5) * 2.0 # [-1, 1]
|
93 |
-
|
94 |
-
#vid_norm = torch.cat([
|
95 |
-
# resize(vid_norm[i:i+1, :, :, :], size).unsqueeze(1) for i in range(vid.size(0))
|
96 |
-
#], dim=1)
|
97 |
vid_norm = resize(vid_norm, size) # tchw
|
98 |
|
99 |
return vid_norm, fps
|
@@ -135,9 +131,7 @@ def vid_postprocessing(video, w, h, fps):
|
|
135 |
|
136 |
t,c,_,_ = video.size()
|
137 |
vid = resize_back(video, w, h)
|
138 |
-
|
139 |
-
vid = vid.clamp(-1, 1)
|
140 |
-
vid = (vid - vid.min()) / (vid.max() - vid.min())
|
141 |
|
142 |
vid = rearrange(vid, "t c h w -> t h w c") # T H W C
|
143 |
vid_np = (vid.cpu().numpy() * 255).astype('uint8')
|
@@ -215,30 +209,27 @@ def animation(gen, chunk_size, device):
|
|
215 |
vid_target_tensor, fps = vid_preprocessing(video, 512)
|
216 |
image_tensor = image_tensor.to(device)
|
217 |
video_target_tensor = vid_target_tensor.to(device) #tchw
|
218 |
-
|
219 |
-
#animated_video = gen.animate_batch(image_tensor, video_target_tensor, labels_v, selected_s, chunk_size)
|
220 |
-
#edited_image = animated_video[:,:,0,:,:]
|
221 |
|
222 |
img_start = video_target_tensor[0:1,:,:,:]
|
223 |
-
#vid_target_tensor_batch = rearrange(video_target_tensor, 'b t c h w -> (b t) c h w')
|
224 |
|
225 |
res = []
|
226 |
-
t = video_target_tensor.size(
|
|
|
227 |
chunks = t // chunk_size
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
z_s2r, alpha_r2s, feat_rgb = compiled_enc_img(image_tensor, selected_s)
|
229 |
-
#z_s2r, alpha_r2s, feat_rgb = gen.enc_img(image_tensor, labels_v, selected_s)
|
230 |
for i in range(chunks+1):
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
img_animated = compiled_dec_vid(z_s2r, alpha_r2s, feat_rgb, img_start, img_target)
|
238 |
-
#img_animated_batch = gen.dec_vid(z_s2r, alpha_r2s, feat_rgb, img_start, img_target_batch)
|
239 |
-
|
240 |
-
res.append(img_animated)
|
241 |
-
animated_video = torch.cat(res, dim=0) # TCHW
|
242 |
edited_image = animated_video[0:1,:,:,:]
|
243 |
|
244 |
# postprocessing
|
@@ -308,7 +299,7 @@ def animation(gen, chunk_size, device):
|
|
308 |
#video_output.render()
|
309 |
video_output = gr.Video(label="Output Video", elem_id="output_vid", width=512)#.render()
|
310 |
|
311 |
-
with gr.Accordion("Control Panel
|
312 |
with gr.Tab("Head"):
|
313 |
with gr.Row():
|
314 |
for k in labels_k[:3]:
|
@@ -344,23 +335,12 @@ def animation(gen, chunk_size, device):
|
|
344 |
fn=edit_media,
|
345 |
inputs=[image_input] + inputs_s,
|
346 |
outputs=[image_output],
|
347 |
-
|
348 |
show_progress='hidden',
|
349 |
-
|
350 |
trigger_mode='always_last',
|
351 |
-
|
352 |
# currently we have a latency around 450ms
|
353 |
stream_every=0.5
|
354 |
)
|
355 |
|
356 |
-
|
357 |
-
#edit_btn.click(
|
358 |
-
# fn=edit_media,
|
359 |
-
# inputs=[image_input] + inputs_s,
|
360 |
-
# outputs=[image_output],
|
361 |
-
# show_progress=True
|
362 |
-
#)
|
363 |
-
|
364 |
animate_btn.click(
|
365 |
fn=animate_media,
|
366 |
inputs=[image_input, video_input] + inputs_s,
|
|
|
90 |
vid = vid_dict[0].permute(0, 3, 1, 2) # tchw
|
91 |
fps = vid_dict[2]['video_fps']
|
92 |
vid_norm = (vid / 255.0 - 0.5) * 2.0 # [-1, 1]
|
|
|
|
|
|
|
|
|
93 |
vid_norm = resize(vid_norm, size) # tchw
|
94 |
|
95 |
return vid_norm, fps
|
|
|
131 |
|
132 |
t,c,_,_ = video.size()
|
133 |
vid = resize_back(video, w, h)
|
134 |
+
vid = vid_denorm(vid)
|
|
|
|
|
135 |
|
136 |
vid = rearrange(vid, "t c h w -> t h w c") # T H W C
|
137 |
vid_np = (vid.cpu().numpy() * 255).astype('uint8')
|
|
|
209 |
vid_target_tensor, fps = vid_preprocessing(video, 512)
|
210 |
image_tensor = image_tensor.to(device)
|
211 |
video_target_tensor = vid_target_tensor.to(device) #tchw
|
|
|
|
|
|
|
212 |
|
213 |
img_start = video_target_tensor[0:1,:,:,:]
|
|
|
214 |
|
215 |
res = []
|
216 |
+
t, c, h, w = video_target_tensor.size()
|
217 |
+
|
218 |
chunks = t // chunk_size
|
219 |
+
if t%chunk_size == 0:
|
220 |
+
vid_target_tensor_batch = torch.zeros(chunk_size * chunks, c, h, w).to(device)
|
221 |
+
else:
|
222 |
+
vid_target_tensor_batch = torch.zeros(chunk_size * (chunks + 1), c, h, w).to(device)
|
223 |
+
vid_target_tensor_batch[:t] = video_target_tensor
|
224 |
+
|
225 |
z_s2r, alpha_r2s, feat_rgb = compiled_enc_img(image_tensor, selected_s)
|
|
|
226 |
for i in range(chunks+1):
|
227 |
+
|
228 |
+
img_target_batch = vid_target_tensor_batch[i * chunk_size:(i + 1) * chunk_size, :, :, :]
|
229 |
+
img_animated_batch = compiled_dec_vid(z_s2r, alpha_r2s, feat_rgb, img_start, img_target_batch)
|
230 |
+
|
231 |
+
res.append(img_animated_batch)
|
232 |
+
animated_video = torch.cat(res, dim=0)[:t] # TCHW
|
|
|
|
|
|
|
|
|
|
|
233 |
edited_image = animated_video[0:1,:,:,:]
|
234 |
|
235 |
# postprocessing
|
|
|
299 |
#video_output.render()
|
300 |
video_output = gr.Video(label="Output Video", elem_id="output_vid", width=512)#.render()
|
301 |
|
302 |
+
with gr.Accordion("Control Panel - Using Sliders to Edit Image", open=True):
|
303 |
with gr.Tab("Head"):
|
304 |
with gr.Row():
|
305 |
for k in labels_k[:3]:
|
|
|
335 |
fn=edit_media,
|
336 |
inputs=[image_input] + inputs_s,
|
337 |
outputs=[image_output],
|
|
|
338 |
show_progress='hidden',
|
|
|
339 |
trigger_mode='always_last',
|
|
|
340 |
# currently we have a latency around 450ms
|
341 |
stream_every=0.5
|
342 |
)
|
343 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
animate_btn.click(
|
345 |
fn=animate_media,
|
346 |
inputs=[image_input, video_input] + inputs_s,
|
gradio_tabs/img_edit.py
CHANGED
@@ -95,14 +95,10 @@ def img_denorm(img):
|
|
95 |
def img_postprocessing(img, w, h):
|
96 |
|
97 |
img = resize_back(img, w, h)
|
98 |
-
#image = image.permute(0, 2, 3, 1)
|
99 |
img = img_denorm(img)
|
100 |
img = img.squeeze(0).permute(1, 2, 0).contiguous() # contiguous() for fast transfer
|
101 |
img_output = (img.cpu().numpy() * 255).astype(np.uint8)
|
102 |
|
103 |
-
#with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
|
104 |
-
# imageio.imwrite(temp_file.name, img_output, quality=8)
|
105 |
-
# return temp_file.name
|
106 |
return img_output
|
107 |
|
108 |
|
@@ -196,7 +192,7 @@ def img_edit(gen, device):
|
|
196 |
image_output = gr.Image(label="Output Image", type='numpy', interactive=False, width=512)
|
197 |
|
198 |
|
199 |
-
with gr.Accordion("Control Panel
|
200 |
with gr.Tab("Head"):
|
201 |
with gr.Row():
|
202 |
for k in labels_k[:3]:
|
@@ -239,15 +235,7 @@ def img_edit(gen, device):
|
|
239 |
|
240 |
# currently we have a latency around 450ms
|
241 |
stream_every=0.5
|
242 |
-
)
|
243 |
-
|
244 |
-
|
245 |
-
#edit_btn.click(
|
246 |
-
# fn=edit_img,
|
247 |
-
# inputs=[image_input] + inputs_s,
|
248 |
-
# outputs=[image_output],
|
249 |
-
# show_progress=True
|
250 |
-
#)
|
251 |
|
252 |
clear_btn.click(
|
253 |
fn=clear_media,
|
|
|
95 |
def img_postprocessing(img, w, h):
|
96 |
|
97 |
img = resize_back(img, w, h)
|
|
|
98 |
img = img_denorm(img)
|
99 |
img = img.squeeze(0).permute(1, 2, 0).contiguous() # contiguous() for fast transfer
|
100 |
img_output = (img.cpu().numpy() * 255).astype(np.uint8)
|
101 |
|
|
|
|
|
|
|
102 |
return img_output
|
103 |
|
104 |
|
|
|
192 |
image_output = gr.Image(label="Output Image", type='numpy', interactive=False, width=512)
|
193 |
|
194 |
|
195 |
+
with gr.Accordion("Control Panel - Using Sliders to Edit Image", open=True):
|
196 |
with gr.Tab("Head"):
|
197 |
with gr.Row():
|
198 |
for k in labels_k[:3]:
|
|
|
235 |
|
236 |
# currently we have a latency around 450ms
|
237 |
stream_every=0.5
|
238 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
clear_btn.click(
|
241 |
fn=clear_media,
|
gradio_tabs/vid_edit.py
CHANGED
@@ -231,21 +231,23 @@ def vid_edit(gen, chunk_size, device):
|
|
231 |
res = []
|
232 |
t = video_target_tensor.size(1)
|
233 |
chunks = t // chunk_size
|
|
|
|
|
234 |
z_s2r, alpha_r2s, feat_rgb = compiled_enc_img(img_start, selected_s)
|
235 |
for i in range(chunks + 1):
|
236 |
if i == chunks:
|
237 |
-
img_target_batch =
|
238 |
-
img_animated_batch = compiled_dec_vid(z_s2r, alpha_r2s, feat_rgb, img_start,
|
239 |
else:
|
240 |
-
img_target_batch =
|
241 |
-
img_animated_batch = compiled_dec_vid(z_s2r, alpha_r2s, feat_rgb, img_start,
|
242 |
|
243 |
res.append(img_animated_batch)
|
244 |
edited_video_tensor = torch.cat(res, dim=0) # TCHW
|
245 |
edited_image_tensor = edited_video_tensor[0:1,:,:,:]
|
246 |
|
247 |
# de-norm
|
248 |
-
animated_video, animated_all_video = vid_all_save(
|
249 |
edited_image = img_postprocessing(edited_image_tensor, w, h)
|
250 |
|
251 |
return edited_image, animated_video, animated_all_video
|
@@ -293,7 +295,7 @@ def vid_edit(gen, chunk_size, device):
|
|
293 |
video_all_output = gr.Video(label="Videos", elem_id="output_vid_all")
|
294 |
|
295 |
with gr.Column(scale=1):
|
296 |
-
with gr.Accordion("Control Panel
|
297 |
with gr.Tab("Head"):
|
298 |
with gr.Row():
|
299 |
for k in labels_k[:3]:
|
@@ -342,13 +344,6 @@ def vid_edit(gen, chunk_size, device):
|
|
342 |
stream_every=0.5
|
343 |
)
|
344 |
|
345 |
-
#edit_btn.click(
|
346 |
-
# fn=edit_img,
|
347 |
-
# inputs=[video_input] + inputs_s,
|
348 |
-
# outputs=[image_output],
|
349 |
-
# show_progress=True
|
350 |
-
#)
|
351 |
-
|
352 |
animate_btn.click(
|
353 |
fn=edit_vid,
|
354 |
inputs=[video_input] + inputs_s, # [image_input, video_input] + inputs_s,
|
|
|
231 |
res = []
|
232 |
t = video_target_tensor.size(1)
|
233 |
chunks = t // chunk_size
|
234 |
+
|
235 |
+
|
236 |
z_s2r, alpha_r2s, feat_rgb = compiled_enc_img(img_start, selected_s)
|
237 |
for i in range(chunks + 1):
|
238 |
if i == chunks:
|
239 |
+
img_target_batch = video_target_tensor[i * chunk_size:, :, :, :]
|
240 |
+
img_animated_batch = compiled_dec_vid(z_s2r, alpha_r2s, feat_rgb, img_start, img_target_batch)
|
241 |
else:
|
242 |
+
img_target_batch = video_target_tensor[i * chunk_size:(i + 1) * chunk_size, :, :, :]
|
243 |
+
img_animated_batch = compiled_dec_vid(z_s2r, alpha_r2s, feat_rgb, img_start, img_target_batch)
|
244 |
|
245 |
res.append(img_animated_batch)
|
246 |
edited_video_tensor = torch.cat(res, dim=0) # TCHW
|
247 |
edited_image_tensor = edited_video_tensor[0:1,:,:,:]
|
248 |
|
249 |
# de-norm
|
250 |
+
animated_video, animated_all_video = vid_all_save(video_target_tensor, edited_video_tensor, w, h, fps)
|
251 |
edited_image = img_postprocessing(edited_image_tensor, w, h)
|
252 |
|
253 |
return edited_image, animated_video, animated_all_video
|
|
|
295 |
video_all_output = gr.Video(label="Videos", elem_id="output_vid_all")
|
296 |
|
297 |
with gr.Column(scale=1):
|
298 |
+
with gr.Accordion("Control Panel - Using Sliders to Edit Image", open=True):
|
299 |
with gr.Tab("Head"):
|
300 |
with gr.Row():
|
301 |
for k in labels_k[:3]:
|
|
|
344 |
stream_every=0.5
|
345 |
)
|
346 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
animate_btn.click(
|
348 |
fn=edit_vid,
|
349 |
inputs=[video_input] + inputs_s, # [image_input, video_input] + inputs_s,
|