Wiuhh's picture
Update app.py
b4ff9c5 verified
raw
history blame
6.45 kB
import json
import os
import time
import uuid
import tempfile
from PIL import Image
import gradio as gr
import base64
import mimetypes
from google import genai
from google.genai import types
# Aapki Gemini API Key yahan daal di gayi hai.
GEMINI_API_KEY = "AIzaSyCrhWiAEQmCidtE2QZw3CTiLt7F8yv5M7A"
## <<< CHANGE START: API Client ko globally initialize karein taaki baar-baar na bane.
# API key configure karein
genai.configure(api_key=GEMINI_API_KEY)
# File service ke liye client banayein
file_client = genai.FilesClient(api_key=GEMINI_API_KEY)
## <<< CHANGE END
def save_binary_file(file_name, data):
with open(file_name, "wb") as f:
f.write(data)
def generate(text, file_name, model="gemini-1.5-flash-latest"): # <<< CHANGE: Model ko stable flash version se update kiya gaya
# Client ko global scope se istemal karein
print(f"Uploading file: {file_name}")
uploaded_file = file_client.upload_file(path=file_name)
print(f"Completed uploading file: {uploaded_file.name}")
# Model ko initialize karein
model_instance = genai.GenerativeModel(model_name=model)
contents = [
types.Content(
role="user",
parts=[
types.Part.from_uri(
file_uri=uploaded_file.uri,
mime_type=uploaded_file.mime_type,
),
types.Part.from_text(text=text),
],
),
]
generate_content_config = types.GenerateContentConfig(
temperature=1,
top_p=0.95,
top_k=40,
max_output_tokens=8192,
response_modalities=[
"image",
"text",
],
response_mime_type="text/plain",
)
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
temp_path = tmp.name
print("Generating content...")
# Stream ki jagah seedha generate karein, image generation ke liye yeh aam taur par behtar hai
response = model_instance.generate_content(
contents=contents,
generation_config=generate_content_config,
)
print("Content generated.")
# Response se image data extract karein
if response.candidates and response.candidates[0].content and response.candidates[0].content.parts:
inline_data = response.candidates[0].content.parts[0].inline_data
if inline_data:
save_binary_file(temp_path, inline_data.data)
print(
f"File of mime type {inline_data.mime_type} saved to: {temp_path}"
)
else:
# Agar image nahi hai, to text response print karein
if response.text:
print(f"Model Response (Text): {response.text}")
else:
print("No image data or text found in the response.")
else:
print("Could not get a valid response from the model.")
# Upload ki gayi file ko delete karein taaki storage na bhare
print(f"Deleting uploaded file: {uploaded_file.name}")
file_client.delete_file(name=uploaded_file.name)
return temp_path
def process_image_and_prompt(composite_pil, prompt):
## <<< CHANGE START: Image ko API par bhejne se pehle resize karein
MAX_SIZE = (1024, 1024) # Maximum dimensions
composite_pil.thumbnail(MAX_SIZE, Image.Resampling.LANCZOS)
print(f"Image resized to fit within {MAX_SIZE} dimensions.")
## <<< CHANGE END
# Resized image ko temporary file mein save karein
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
composite_path = tmp.name
# Agar image mein transparency (alpha channel) hai to use RGB mein convert karein
if composite_pil.mode == "RGBA":
composite_pil = composite_pil.convert("RGB")
composite_pil.save(composite_path, "PNG")
file_name = composite_path
input_text = prompt
gemma_edited_image_path = generate(text=input_text, file_name=file_name)
if os.path.exists(gemma_edited_image_path) and os.path.getsize(gemma_edited_image_path) > 0:
print("image_path ", gemma_edited_image_path)
result_img = Image.open(gemma_edited_image_path)
# Safai ke liye temporary files delete karein
os.remove(composite_path)
os.remove(gemma_edited_image_path)
return [result_img]
else:
# Agar koi image generate nahi hui to error handle karein
print("Failed to generate image or the generated file is empty.")
os.remove(composite_path) # Input temp file ko phir bhi delete karein
# Aap yahan user ko ek error message dikha sakte hain
# For now, we return nothing, which will clear the gallery
return []
# Build a Blocks-based interface.
with gr.Blocks() as demo:
gr.Markdown("## Gen AI Image Editing\nUpload an image and enter a prompt to generate outputs in the gallery. Do not Use NFSW Images")
# Define examples to be shown within the Gradio interface
examples = [
["data/1.webp", 'change text to "AMEER"'],
["data/2.webp", "remove the spoon from hand only"],
["data/3.webp", 'change text to "Make it "'],
["data/1.jpg", "add joker style only on face"],
["data/1777043.jpg", "add joker style only on face"],
["data/2807615.jpg","add lipstick on lip only "],
["data/76860.jpg", "add lipstick on lip only "],
["data/2807615.jpg", "make it happy looking face only"],
]
with gr.Row():
with gr.Column():
image_input = gr.Image(
type="pil",
label="Upload Image",
image_mode="RGBA"
)
prompt_input = gr.Textbox(
lines=2,
placeholder="Enter prompt here...",
label="Prompt"
)
submit_btn = gr.Button("Generate")
with gr.Column():
output_gallery = gr.Gallery(label="Generated Outputs")
# Set up the interaction.
submit_btn.click(
fn=process_image_and_prompt,
inputs=[image_input, prompt_input],
outputs=output_gallery,
show_progress="full" # <<< CHANGE: UI mein loading progress dikhayein
)
gr.Examples(
examples=examples,
inputs=[image_input, prompt_input],
label="Try these examples"
)
demo.launch(share=True)