Spaces:
Running
Running
import json | |
import os | |
import time | |
import uuid | |
import tempfile | |
from PIL import Image | |
import gradio as gr | |
import base64 | |
import mimetypes | |
from google import genai | |
from google.genai import types | |
# Aapki Gemini API Key yahan daal di gayi hai. | |
GEMINI_API_KEY = "AIzaSyCrhWiAEQmCidtE2QZw3CTiLt7F8yv5M7A" | |
## <<< CHANGE START: API Client ko globally initialize karein taaki baar-baar na bane. | |
# API key configure karein | |
genai.configure(api_key=GEMINI_API_KEY) | |
# File service ke liye client banayein | |
file_client = genai.FilesClient(api_key=GEMINI_API_KEY) | |
## <<< CHANGE END | |
def save_binary_file(file_name, data): | |
with open(file_name, "wb") as f: | |
f.write(data) | |
def generate(text, file_name, model="gemini-1.5-flash-latest"): # <<< CHANGE: Model ko stable flash version se update kiya gaya | |
# Client ko global scope se istemal karein | |
print(f"Uploading file: {file_name}") | |
uploaded_file = file_client.upload_file(path=file_name) | |
print(f"Completed uploading file: {uploaded_file.name}") | |
# Model ko initialize karein | |
model_instance = genai.GenerativeModel(model_name=model) | |
contents = [ | |
types.Content( | |
role="user", | |
parts=[ | |
types.Part.from_uri( | |
file_uri=uploaded_file.uri, | |
mime_type=uploaded_file.mime_type, | |
), | |
types.Part.from_text(text=text), | |
], | |
), | |
] | |
generate_content_config = types.GenerateContentConfig( | |
temperature=1, | |
top_p=0.95, | |
top_k=40, | |
max_output_tokens=8192, | |
response_modalities=[ | |
"image", | |
"text", | |
], | |
response_mime_type="text/plain", | |
) | |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp: | |
temp_path = tmp.name | |
print("Generating content...") | |
# Stream ki jagah seedha generate karein, image generation ke liye yeh aam taur par behtar hai | |
response = model_instance.generate_content( | |
contents=contents, | |
generation_config=generate_content_config, | |
) | |
print("Content generated.") | |
# Response se image data extract karein | |
if response.candidates and response.candidates[0].content and response.candidates[0].content.parts: | |
inline_data = response.candidates[0].content.parts[0].inline_data | |
if inline_data: | |
save_binary_file(temp_path, inline_data.data) | |
print( | |
f"File of mime type {inline_data.mime_type} saved to: {temp_path}" | |
) | |
else: | |
# Agar image nahi hai, to text response print karein | |
if response.text: | |
print(f"Model Response (Text): {response.text}") | |
else: | |
print("No image data or text found in the response.") | |
else: | |
print("Could not get a valid response from the model.") | |
# Upload ki gayi file ko delete karein taaki storage na bhare | |
print(f"Deleting uploaded file: {uploaded_file.name}") | |
file_client.delete_file(name=uploaded_file.name) | |
return temp_path | |
def process_image_and_prompt(composite_pil, prompt): | |
## <<< CHANGE START: Image ko API par bhejne se pehle resize karein | |
MAX_SIZE = (1024, 1024) # Maximum dimensions | |
composite_pil.thumbnail(MAX_SIZE, Image.Resampling.LANCZOS) | |
print(f"Image resized to fit within {MAX_SIZE} dimensions.") | |
## <<< CHANGE END | |
# Resized image ko temporary file mein save karein | |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp: | |
composite_path = tmp.name | |
# Agar image mein transparency (alpha channel) hai to use RGB mein convert karein | |
if composite_pil.mode == "RGBA": | |
composite_pil = composite_pil.convert("RGB") | |
composite_pil.save(composite_path, "PNG") | |
file_name = composite_path | |
input_text = prompt | |
gemma_edited_image_path = generate(text=input_text, file_name=file_name) | |
if os.path.exists(gemma_edited_image_path) and os.path.getsize(gemma_edited_image_path) > 0: | |
print("image_path ", gemma_edited_image_path) | |
result_img = Image.open(gemma_edited_image_path) | |
# Safai ke liye temporary files delete karein | |
os.remove(composite_path) | |
os.remove(gemma_edited_image_path) | |
return [result_img] | |
else: | |
# Agar koi image generate nahi hui to error handle karein | |
print("Failed to generate image or the generated file is empty.") | |
os.remove(composite_path) # Input temp file ko phir bhi delete karein | |
# Aap yahan user ko ek error message dikha sakte hain | |
# For now, we return nothing, which will clear the gallery | |
return [] | |
# Build a Blocks-based interface. | |
with gr.Blocks() as demo: | |
gr.Markdown("## Gen AI Image Editing\nUpload an image and enter a prompt to generate outputs in the gallery. Do not Use NFSW Images") | |
# Define examples to be shown within the Gradio interface | |
examples = [ | |
["data/1.webp", 'change text to "AMEER"'], | |
["data/2.webp", "remove the spoon from hand only"], | |
["data/3.webp", 'change text to "Make it "'], | |
["data/1.jpg", "add joker style only on face"], | |
["data/1777043.jpg", "add joker style only on face"], | |
["data/2807615.jpg","add lipstick on lip only "], | |
["data/76860.jpg", "add lipstick on lip only "], | |
["data/2807615.jpg", "make it happy looking face only"], | |
] | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image( | |
type="pil", | |
label="Upload Image", | |
image_mode="RGBA" | |
) | |
prompt_input = gr.Textbox( | |
lines=2, | |
placeholder="Enter prompt here...", | |
label="Prompt" | |
) | |
submit_btn = gr.Button("Generate") | |
with gr.Column(): | |
output_gallery = gr.Gallery(label="Generated Outputs") | |
# Set up the interaction. | |
submit_btn.click( | |
fn=process_image_and_prompt, | |
inputs=[image_input, prompt_input], | |
outputs=output_gallery, | |
show_progress="full" # <<< CHANGE: UI mein loading progress dikhayein | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[image_input, prompt_input], | |
label="Try these examples" | |
) | |
demo.launch(share=True) |