File size: 6,454 Bytes
41a4a34
 
 
 
 
 
 
 
 
 
 
 
 
f39cc1d
 
41a4a34
b4ff9c5
 
 
 
 
 
 
41a4a34
 
 
 
b4ff9c5
41a4a34
b4ff9c5
 
 
 
 
 
 
27a7b61
 
f39cc1d
 
 
 
b4ff9c5
 
f39cc1d
 
 
 
41a4a34
f39cc1d
41a4a34
 
 
 
f39cc1d
 
 
 
 
27a7b61
 
f39cc1d
 
b4ff9c5
 
 
f39cc1d
b4ff9c5
 
 
 
 
 
 
f39cc1d
 
 
b4ff9c5
f39cc1d
 
b4ff9c5
 
 
 
 
 
 
 
 
 
 
 
 
f39cc1d
 
41a4a34
 
b4ff9c5
 
 
 
 
 
 
41a4a34
 
b4ff9c5
 
 
 
41a4a34
 
 
b4ff9c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27a7b61
153d837
f39cc1d
 
b4ff9c5
 
27a7b61
 
 
f39cc1d
 
 
b4ff9c5
 
 
 
27a7b61
153d837
f39cc1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41a4a34
 
b4ff9c5
41a4a34
b4ff9c5
f39cc1d
 
 
b4ff9c5
f39cc1d
41a4a34
 
f39cc1d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import json
import os
import time
import uuid
import tempfile
from PIL import Image
import gradio as gr
import base64
import mimetypes

from google import genai
from google.genai import types

# Aapki Gemini API Key yahan daal di gayi hai.
GEMINI_API_KEY = "AIzaSyCrhWiAEQmCidtE2QZw3CTiLt7F8yv5M7A"

## <<< CHANGE START: API Client ko globally initialize karein taaki baar-baar na bane.
# API key configure karein
genai.configure(api_key=GEMINI_API_KEY)
# File service ke liye client banayein
file_client = genai.FilesClient(api_key=GEMINI_API_KEY)
## <<< CHANGE END

def save_binary_file(file_name, data):
    with open(file_name, "wb") as f:
        f.write(data)

def generate(text, file_name, model="gemini-1.5-flash-latest"): # <<< CHANGE: Model ko stable flash version se update kiya gaya
    
    # Client ko global scope se istemal karein
    print(f"Uploading file: {file_name}")
    uploaded_file = file_client.upload_file(path=file_name)
    print(f"Completed uploading file: {uploaded_file.name}")

    # Model ko initialize karein
    model_instance = genai.GenerativeModel(model_name=model)

    contents = [
        types.Content(
            role="user",
            parts=[
                types.Part.from_uri(
                    file_uri=uploaded_file.uri,
                    mime_type=uploaded_file.mime_type,
                ),
                types.Part.from_text(text=text),
            ],
        ),
    ]
    generate_content_config = types.GenerateContentConfig(
        temperature=1,
        top_p=0.95,
        top_k=40,
        max_output_tokens=8192,
        response_modalities=[
            "image",
            "text",
        ],
        response_mime_type="text/plain",
    )

    with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
        temp_path = tmp.name
        print("Generating content...")
        # Stream ki jagah seedha generate karein, image generation ke liye yeh aam taur par behtar hai
        response = model_instance.generate_content(
            contents=contents,
            generation_config=generate_content_config,
        )
        print("Content generated.")
        
        # Response se image data extract karein
        if response.candidates and response.candidates[0].content and response.candidates[0].content.parts:
            inline_data = response.candidates[0].content.parts[0].inline_data
            if inline_data:
                save_binary_file(temp_path, inline_data.data)
                print(
                    f"File of mime type {inline_data.mime_type} saved to: {temp_path}"
                )
            else:
                 # Agar image nahi hai, to text response print karein
                if response.text:
                    print(f"Model Response (Text): {response.text}")
                else:
                    print("No image data or text found in the response.")
        else:
            print("Could not get a valid response from the model.")


    # Upload ki gayi file ko delete karein taaki storage na bhare
    print(f"Deleting uploaded file: {uploaded_file.name}")
    file_client.delete_file(name=uploaded_file.name)
    
    return temp_path
 

def process_image_and_prompt(composite_pil, prompt):
    ## <<< CHANGE START: Image ko API par bhejne se pehle resize karein
    MAX_SIZE = (1024, 1024)  # Maximum dimensions
    composite_pil.thumbnail(MAX_SIZE, Image.Resampling.LANCZOS)
    print(f"Image resized to fit within {MAX_SIZE} dimensions.")
    ## <<< CHANGE END

    # Resized image ko temporary file mein save karein
    with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
        composite_path = tmp.name
        # Agar image mein transparency (alpha channel) hai to use RGB mein convert karein
        if composite_pil.mode == "RGBA":
            composite_pil = composite_pil.convert("RGB")
        composite_pil.save(composite_path, "PNG")

    file_name = composite_path  
    input_text = prompt 
    
    gemma_edited_image_path = generate(text=input_text, file_name=file_name)
    
    if os.path.exists(gemma_edited_image_path) and os.path.getsize(gemma_edited_image_path) > 0:
        print("image_path ", gemma_edited_image_path)
        result_img = Image.open(gemma_edited_image_path)
        # Safai ke liye temporary files delete karein
        os.remove(composite_path)
        os.remove(gemma_edited_image_path)
        return [result_img]
    else:
        # Agar koi image generate nahi hui to error handle karein
        print("Failed to generate image or the generated file is empty.")
        os.remove(composite_path) # Input temp file ko phir bhi delete karein
        # Aap yahan user ko ek error message dikha sakte hain
        # For now, we return nothing, which will clear the gallery
        return []


# Build a Blocks-based interface.
with gr.Blocks() as demo:
    gr.Markdown("## Gen AI Image Editing\nUpload an image and enter a prompt to generate outputs in the gallery. Do not Use NFSW Images")
    
    # Define examples to be shown within the Gradio interface
    examples = [
        ["data/1.webp", 'change text to "AMEER"'],
        ["data/2.webp", "remove the spoon from  hand only"],
        ["data/3.webp", 'change text to "Make it "'],
        ["data/1.jpg", "add  joker style only on face"],
        ["data/1777043.jpg", "add  joker style only on face"],
        ["data/2807615.jpg","add lipstick on lip only "],
        ["data/76860.jpg", "add lipstick on lip only "],
        ["data/2807615.jpg", "make it happy looking face only"],
    ]

    with gr.Row():
        with gr.Column():
            image_input = gr.Image(
                type="pil",
                label="Upload Image",
                image_mode="RGBA"
            )
            prompt_input = gr.Textbox(
                lines=2,
                placeholder="Enter prompt here...",
                label="Prompt"
            )
            submit_btn = gr.Button("Generate")
        with gr.Column():
            output_gallery = gr.Gallery(label="Generated Outputs")

    # Set up the interaction.
    submit_btn.click(
        fn=process_image_and_prompt,
        inputs=[image_input, prompt_input],
        outputs=output_gallery,
        show_progress="full"  # <<< CHANGE: UI mein loading progress dikhayein
    )
    gr.Examples(
        examples=examples,
        inputs=[image_input, prompt_input],
        label="Try these examples"
    )

demo.launch(share=True)