File size: 13,720 Bytes
583a375
 
 
 
 
 
 
 
 
 
 
36ea603
583a375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36ea603
 
 
 
 
 
583a375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
### Import necessary libraries: here you will use streamlit library to run a text search demo, please make sure to install it.
# !pip install streamlit sentence-transformers gdown matplotlib
# !pip install pyngrok
import subprocess

subprocess.run([
    "pip", "install",
    "streamlit",
    "sentence-transformers",
    "gdown",
    "matplotlib",
    "tf-keras"  # Add tf-keras to Dependency
], check=True)

import streamlit as st
import numpy as np
import numpy.linalg as la
import pickle
import os
import gdown
from sentence_transformers import SentenceTransformer
import matplotlib.pyplot as plt
import math
import os
import subprocess

### Some predefined utility functions for you to load the text embeddings

# Function to Load Glove Embeddings
def load_glove_embeddings(glove_path="Data/embeddings.pkl"):
    with open(glove_path, "rb") as f:
        embeddings_dict = pickle.load(f, encoding="latin1")

    return embeddings_dict

def get_model_id_gdrive(model_type):
    if model_type == "25d":
        word_index_id = "13qMXs3-oB9C6kfSRMwbAtzda9xuAUtt8"
        embeddings_id = "1-RXcfBvWyE-Av3ZHLcyJVsps0RYRRr_2"
    elif model_type == "50d":
        embeddings_id = "1DBaVpJsitQ1qxtUvV1Kz7ThDc3az16kZ"
        word_index_id = "1rB4ksHyHZ9skes-fJHMa2Z8J1Qa7awQ9"
    elif model_type == "100d":
        word_index_id = "1-oWV0LqG3fmrozRZ7WB1jzeTJHRUI3mq"
        embeddings_id = "1SRHfX130_6Znz7zbdfqboKosz-PfNvNp"
        
    return word_index_id, embeddings_id

def download_glove_embeddings_gdrive(model_type):
    # Get glove embeddings from google drive
    word_index_id, embeddings_id = get_model_id_gdrive(model_type)

    # Use gdown to get files from google drive
    embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy"
    word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl"

    # Download word_index pickle file
    print("Downloading word index dictionary....\n")
    gdown.download(id=word_index_id, output=word_index_temp, quiet=False)

    # Download embeddings numpy file
    print("Donwloading embedings...\n\n")
    gdown.download(id=embeddings_id, output=embeddings_temp, quiet=False)

# @st.cache_data()
def load_glove_embeddings_gdrive(model_type):
    word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl"
    embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy"

    # Load word index dictionary
    word_index_dict = pickle.load(open(word_index_temp, "rb"), encoding="latin")

    # Load embeddings numpy
    embeddings = np.load(embeddings_temp)

    return word_index_dict, embeddings

@st.cache_resource()
def load_sentence_transformer_model(model_name):
    sentenceTransformer = SentenceTransformer(model_name)
    return sentenceTransformer

def get_sentence_transformer_embeddings(sentence, model_name="all-MiniLM-L6-v2"):
    """
    Get sentence transformer embeddings for a sentence
    """
    # 384 dimensional embedding
    # Default model: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2  
    sentenceTransformer = load_sentence_transformer_model(model_name)

    try:
        return sentenceTransformer.encode(sentence)
    except:
        if model_name == "all-MiniLM-L6-v2":
            return np.zeros(384)
        else:
            return np.zeros(512)

def get_glove_embeddings(word, word_index_dict, embeddings, model_type):
    """
    Get glove embedding for a single word
    """
    if word.lower() in word_index_dict:
        return embeddings[word_index_dict[word.lower()]]
    else:
        return np.zeros(int(model_type.split("d")[0]))

def get_category_embeddings(embeddings_metadata):
    """
    Get embeddings for each category
    1. Split categories into words
    2. Get embeddings for each word
    """
    model_name = embeddings_metadata["model_name"]
    st.session_state["cat_embed_" + model_name] = {}
    for category in st.session_state.categories.split(" "):
        if model_name:
            if not category in st.session_state["cat_embed_" + model_name]:
                st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category, model_name=model_name)
        else:
            if not category in st.session_state["cat_embed_" + model_name]:
                st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category)

def update_category_embeddings(embeddings_metadata):
    """
    Update embeddings for each category
    """
    get_category_embeddings(embeddings_metadata)

### Plotting utility functions
    
def plot_piechart(sorted_cosine_scores_items):
    sorted_cosine_scores = np.array([
            sorted_cosine_scores_items[index][1]
            for index in range(len(sorted_cosine_scores_items))
        ]
    )
    categories = st.session_state.categories.split(" ")
    categories_sorted = [
        categories[sorted_cosine_scores_items[index][0]]
        for index in range(len(sorted_cosine_scores_items))
    ]
    fig, ax = plt.subplots()
    ax.pie(sorted_cosine_scores, labels=categories_sorted, autopct="%1.1f%%")
    st.pyplot(fig)  # Figure

def plot_piechart_helper(sorted_cosine_scores_items):
    sorted_cosine_scores = np.array(
        [
            sorted_cosine_scores_items[index][1]
            for index in range(len(sorted_cosine_scores_items))
        ]
    )
    categories = st.session_state.categories.split(" ")
    categories_sorted = [
        categories[sorted_cosine_scores_items[index][0]]
        for index in range(len(sorted_cosine_scores_items))
    ]
    fig, ax = plt.subplots(figsize=(3, 3))
    my_explode = np.zeros(len(categories_sorted))
    my_explode[0] = 0.2
    if len(categories_sorted) == 3:
        my_explode[1] = 0.1  # explode this by 0.2
    elif len(categories_sorted) > 3:
        my_explode[2] = 0.05
    ax.pie(
        sorted_cosine_scores,
        labels=categories_sorted,
        autopct="%1.1f%%",
        explode=my_explode,
    )

    return fig

def plot_piecharts(sorted_cosine_scores_models):
    scores_list = []
    categories = st.session_state.categories.split(" ")
    index = 0
    for model in sorted_cosine_scores_models:
        scores_list.append(sorted_cosine_scores_models[model])
        index += 1

    if len(sorted_cosine_scores_models) == 2:
        fig, (ax1, ax2) = plt.subplots(2)

        categories_sorted = [
            categories[scores_list[0][index][0]] for index in range(len(scores_list[0]))
        ]
        sorted_scores = np.array(
            [scores_list[0][index][1] for index in range(len(scores_list[0]))]
        )
        ax1.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%")

        categories_sorted = [
            categories[scores_list[1][index][0]] for index in range(len(scores_list[1]))
        ]
        sorted_scores = np.array(
            [scores_list[1][index][1] for index in range(len(scores_list[1]))]
        )
        ax2.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%")

    st.pyplot(fig)

def plot_alatirchart(sorted_cosine_scores_models):
    models = list(sorted_cosine_scores_models.keys())
    tabs = st.tabs(models)
    figs = {}
    for model in models:
        figs[model] = plot_piechart_helper(sorted_cosine_scores_models[model])

    for index in range(len(tabs)):
        with tabs[index]:
            st.pyplot(figs[models[index]])

### Your Part To Complete: Follow the instructions in each function below to complete the similarity calculation between text embeddings

# Task I: Compute Cosine Similarity
def cosine_similarity(x, y):
    """
    Exponentiated cosine similarity
    1. Compute cosine similarity
    2. Exponentiate cosine similarity
    3. Return exponentiated cosine similarity
    (20 pts)
    """
    # Potential Division by Zero in cosine_similarity
    norm_x = la.norm(x)
    norm_y = la.norm(y)
    if norm_x == 0 or norm_y == 0:
        return 0  # Return 0 instead of NaN
    
    cosine_sim = np.dot(x, y) / (la.norm(x) * la.norm(y))
    return np.exp(cosine_sim)

# Task II: Average Glove Embedding Calculation
def averaged_glove_embeddings_gdrive(sentence, word_index_dict, embeddings, model_type=50):
    """
    Get averaged glove embeddings for a sentence
    1. Split sentence into words
    2. Get embeddings for each word
    3. Add embeddings for each word
    4. Divide by number of words
    5. Return averaged embeddings
    (30 pts)
    """
    words = sentence.split()
    embedding = np.zeros(int(model_type.split("d")[0]))
    for word in words:
        embedding += get_glove_embeddings(word, word_index_dict, embeddings, model_type)
    return embedding / len(words)

# Task III: Sort the cosine similarity
def get_sorted_cosine_similarity(embeddings_metadata):
    """
    Get sorted cosine similarity between input sentence and categories
    Steps:
    1. Get embeddings for input sentence
    2. Get embeddings for categories (if not found, update category embeddings)
    3. Compute cosine similarity between input sentence and categories
    4. Sort cosine similarity
    5. Return sorted cosine similarity
    (50 pts)
    """
    categories = st.session_state.categories.split(" ")
    cosine_sim = {}
    if embeddings_metadata["embedding_model"] == "glove":
        word_index_dict = embeddings_metadata["word_index_dict"]
        embeddings = embeddings_metadata["embeddings"]
        model_type = embeddings_metadata["model_type"]

        input_embedding = averaged_glove_embeddings_gdrive(st.session_state.text_search,
                                                            word_index_dict,
                                                            embeddings, model_type)

        for index, category in enumerate(categories):
            category_embedding = averaged_glove_embeddings_gdrive(category, word_index_dict, embeddings, model_type)
            cosine_sim[index] = cosine_similarity(input_embedding, category_embedding)

    else:
        model_name = embeddings_metadata["model_name"]
        if not "cat_embed_" + model_name in st.session_state:
            get_category_embeddings(embeddings_metadata)

        category_embeddings = st.session_state["cat_embed_" + model_name]

        input_embedding = get_sentence_transformer_embeddings(st.session_state.text_search, model_name=model_name)
        for index, category in enumerate(categories):
            cosine_sim[index] = cosine_similarity(input_embedding, category_embeddings[category])

    sorted_cosine_sim = sorted(cosine_sim.items(), key=lambda x: x[1], reverse=True)
    return sorted_cosine_sim

### Below is the main function, creating the app demo for text search engine using the text embeddings.

if __name__ == "__main__":
    # Initialize session state variables
    if "categories" not in st.session_state:
        st.session_state["categories"] = "Flowers Colors Cars Weather Food"

    if "text_search" not in st.session_state:
        st.session_state["text_search"] = "Roses are red, trucks are blue, and Seattle is grey right now"

    st.sidebar.title("GloVe Twitter")
    st.sidebar.markdown(
        """
        GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Pretrained on 
        2 billion tweets with vocabulary size of 1.2 million. Download from [Stanford NLP](http://nlp.stanford.edu/data/glove.twitter.27B.zip). 

        Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. *GloVe: Global Vectors for Word Representation*.
        """
    )

    model_type = st.sidebar.selectbox("Choose the model", ("25d", "50d", "100d"), index=1)

    st.title("Search Based Retrieval Demo")
    st.subheader(
        "Pass in space separated categories you want this search demo to be about."
    )
    st.text_input(
        label="Categories", key="categories", value=st.session_state["categories"]
    )

    st.subheader("Pass in an input word or even a sentence")
    st.text_input(
        label="Input your sentence",
        key="text_search",
        value=st.session_state["text_search"],
    )

    embeddings_path = "embeddings_" + str(model_type) + "_temp.npy"
    word_index_dict_path = "word_index_dict_" + str(model_type) + "_temp.pkl"
    if not os.path.isfile(embeddings_path) or not os.path.isfile(word_index_dict_path):
        with st.spinner("Downloading glove embeddings..."):
            download_glove_embeddings_gdrive(model_type)

    word_index_dict, embeddings = load_glove_embeddings_gdrive(model_type)

    if st.session_state.text_search:
        embeddings_metadata = {
            "embedding_model": "glove",
            "word_index_dict": word_index_dict,
            "embeddings": embeddings,
            "model_type": model_type,
        }
        with st.spinner("Obtaining Cosine similarity for Glove..."):
            sorted_cosine_sim_glove = get_sorted_cosine_similarity(embeddings_metadata)

        embeddings_metadata = {
            "embedding_model": "transformers", 
            "model_name": "all-MiniLM-L6-v2"
        }
        with st.spinner("Obtaining Cosine similarity for 384d sentence transformer..."):
            sorted_cosine_sim_transformer = get_sorted_cosine_similarity(embeddings_metadata)

        st.subheader(
            "Closest word I have between: "
            + st.session_state.categories
            + " as per different Embeddings"
        )

        plot_alatirchart(
            {
                "glove_" + str(model_type): sorted_cosine_sim_glove,
                "sentence_transformer_384": sorted_cosine_sim_transformer,
            }
        )

        st.write("")
        st.write(
            "Demo developed by [Your Name](https://www.linkedin.com/in/your_id/ - Optional)"
        )