Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +366 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Import necessary libraries: here you will use streamlit library to run a text search demo, please make sure to install it.
|
2 |
+
# !pip install streamlit sentence-transformers gdown matplotlib
|
3 |
+
# !pip install pyngrok
|
4 |
+
import subprocess
|
5 |
+
|
6 |
+
subprocess.run([
|
7 |
+
"pip", "install",
|
8 |
+
"streamlit",
|
9 |
+
"sentence-transformers",
|
10 |
+
"gdown",
|
11 |
+
"matplotlib",
|
12 |
+
"tf-keras" # 添加 tf-keras 到依赖列表
|
13 |
+
], check=True)
|
14 |
+
|
15 |
+
import streamlit as st
|
16 |
+
import numpy as np
|
17 |
+
import numpy.linalg as la
|
18 |
+
import pickle
|
19 |
+
import os
|
20 |
+
import gdown
|
21 |
+
from sentence_transformers import SentenceTransformer
|
22 |
+
import matplotlib.pyplot as plt
|
23 |
+
import math
|
24 |
+
import os
|
25 |
+
import subprocess
|
26 |
+
|
27 |
+
### Some predefined utility functions for you to load the text embeddings
|
28 |
+
|
29 |
+
# Function to Load Glove Embeddings
|
30 |
+
def load_glove_embeddings(glove_path="Data/embeddings.pkl"):
|
31 |
+
with open(glove_path, "rb") as f:
|
32 |
+
embeddings_dict = pickle.load(f, encoding="latin1")
|
33 |
+
|
34 |
+
return embeddings_dict
|
35 |
+
|
36 |
+
def get_model_id_gdrive(model_type):
|
37 |
+
if model_type == "25d":
|
38 |
+
word_index_id = "13qMXs3-oB9C6kfSRMwbAtzda9xuAUtt8"
|
39 |
+
embeddings_id = "1-RXcfBvWyE-Av3ZHLcyJVsps0RYRRr_2"
|
40 |
+
elif model_type == "50d":
|
41 |
+
embeddings_id = "1DBaVpJsitQ1qxtUvV1Kz7ThDc3az16kZ"
|
42 |
+
word_index_id = "1rB4ksHyHZ9skes-fJHMa2Z8J1Qa7awQ9"
|
43 |
+
elif model_type == "100d":
|
44 |
+
word_index_id = "1-oWV0LqG3fmrozRZ7WB1jzeTJHRUI3mq"
|
45 |
+
embeddings_id = "1SRHfX130_6Znz7zbdfqboKosz-PfNvNp"
|
46 |
+
|
47 |
+
return word_index_id, embeddings_id
|
48 |
+
|
49 |
+
def download_glove_embeddings_gdrive(model_type):
|
50 |
+
# Get glove embeddings from google drive
|
51 |
+
word_index_id, embeddings_id = get_model_id_gdrive(model_type)
|
52 |
+
|
53 |
+
# Use gdown to get files from google drive
|
54 |
+
embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy"
|
55 |
+
word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl"
|
56 |
+
|
57 |
+
# Download word_index pickle file
|
58 |
+
print("Downloading word index dictionary....\n")
|
59 |
+
gdown.download(id=word_index_id, output=word_index_temp, quiet=False)
|
60 |
+
|
61 |
+
# Download embeddings numpy file
|
62 |
+
print("Donwloading embedings...\n\n")
|
63 |
+
gdown.download(id=embeddings_id, output=embeddings_temp, quiet=False)
|
64 |
+
|
65 |
+
# @st.cache_data()
|
66 |
+
def load_glove_embeddings_gdrive(model_type):
|
67 |
+
word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl"
|
68 |
+
embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy"
|
69 |
+
|
70 |
+
# Load word index dictionary
|
71 |
+
word_index_dict = pickle.load(open(word_index_temp, "rb"), encoding="latin")
|
72 |
+
|
73 |
+
# Load embeddings numpy
|
74 |
+
embeddings = np.load(embeddings_temp)
|
75 |
+
|
76 |
+
return word_index_dict, embeddings
|
77 |
+
|
78 |
+
@st.cache_resource()
|
79 |
+
def load_sentence_transformer_model(model_name):
|
80 |
+
sentenceTransformer = SentenceTransformer(model_name)
|
81 |
+
return sentenceTransformer
|
82 |
+
|
83 |
+
def get_sentence_transformer_embeddings(sentence, model_name="all-MiniLM-L6-v2"):
|
84 |
+
"""
|
85 |
+
Get sentence transformer embeddings for a sentence
|
86 |
+
"""
|
87 |
+
# 384 dimensional embedding
|
88 |
+
# Default model: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
|
89 |
+
sentenceTransformer = load_sentence_transformer_model(model_name)
|
90 |
+
|
91 |
+
try:
|
92 |
+
return sentenceTransformer.encode(sentence)
|
93 |
+
except:
|
94 |
+
if model_name == "all-MiniLM-L6-v2":
|
95 |
+
return np.zeros(384)
|
96 |
+
else:
|
97 |
+
return np.zeros(512)
|
98 |
+
|
99 |
+
def get_glove_embeddings(word, word_index_dict, embeddings, model_type):
|
100 |
+
"""
|
101 |
+
Get glove embedding for a single word
|
102 |
+
"""
|
103 |
+
if word.lower() in word_index_dict:
|
104 |
+
return embeddings[word_index_dict[word.lower()]]
|
105 |
+
else:
|
106 |
+
return np.zeros(int(model_type.split("d")[0]))
|
107 |
+
|
108 |
+
def get_category_embeddings(embeddings_metadata):
|
109 |
+
"""
|
110 |
+
Get embeddings for each category
|
111 |
+
1. Split categories into words
|
112 |
+
2. Get embeddings for each word
|
113 |
+
"""
|
114 |
+
model_name = embeddings_metadata["model_name"]
|
115 |
+
st.session_state["cat_embed_" + model_name] = {}
|
116 |
+
for category in st.session_state.categories.split(" "):
|
117 |
+
if model_name:
|
118 |
+
if not category in st.session_state["cat_embed_" + model_name]:
|
119 |
+
st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category, model_name=model_name)
|
120 |
+
else:
|
121 |
+
if not category in st.session_state["cat_embed_" + model_name]:
|
122 |
+
st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category)
|
123 |
+
|
124 |
+
def update_category_embeddings(embeddings_metadata):
|
125 |
+
"""
|
126 |
+
Update embeddings for each category
|
127 |
+
"""
|
128 |
+
get_category_embeddings(embeddings_metadata)
|
129 |
+
|
130 |
+
### Plotting utility functions
|
131 |
+
|
132 |
+
def plot_piechart(sorted_cosine_scores_items):
|
133 |
+
sorted_cosine_scores = np.array([
|
134 |
+
sorted_cosine_scores_items[index][1]
|
135 |
+
for index in range(len(sorted_cosine_scores_items))
|
136 |
+
]
|
137 |
+
)
|
138 |
+
categories = st.session_state.categories.split(" ")
|
139 |
+
categories_sorted = [
|
140 |
+
categories[sorted_cosine_scores_items[index][0]]
|
141 |
+
for index in range(len(sorted_cosine_scores_items))
|
142 |
+
]
|
143 |
+
fig, ax = plt.subplots()
|
144 |
+
ax.pie(sorted_cosine_scores, labels=categories_sorted, autopct="%1.1f%%")
|
145 |
+
st.pyplot(fig) # Figure
|
146 |
+
|
147 |
+
def plot_piechart_helper(sorted_cosine_scores_items):
|
148 |
+
sorted_cosine_scores = np.array(
|
149 |
+
[
|
150 |
+
sorted_cosine_scores_items[index][1]
|
151 |
+
for index in range(len(sorted_cosine_scores_items))
|
152 |
+
]
|
153 |
+
)
|
154 |
+
categories = st.session_state.categories.split(" ")
|
155 |
+
categories_sorted = [
|
156 |
+
categories[sorted_cosine_scores_items[index][0]]
|
157 |
+
for index in range(len(sorted_cosine_scores_items))
|
158 |
+
]
|
159 |
+
fig, ax = plt.subplots(figsize=(3, 3))
|
160 |
+
my_explode = np.zeros(len(categories_sorted))
|
161 |
+
my_explode[0] = 0.2
|
162 |
+
if len(categories_sorted) == 3:
|
163 |
+
my_explode[1] = 0.1 # explode this by 0.2
|
164 |
+
elif len(categories_sorted) > 3:
|
165 |
+
my_explode[2] = 0.05
|
166 |
+
ax.pie(
|
167 |
+
sorted_cosine_scores,
|
168 |
+
labels=categories_sorted,
|
169 |
+
autopct="%1.1f%%",
|
170 |
+
explode=my_explode,
|
171 |
+
)
|
172 |
+
|
173 |
+
return fig
|
174 |
+
|
175 |
+
def plot_piecharts(sorted_cosine_scores_models):
|
176 |
+
scores_list = []
|
177 |
+
categories = st.session_state.categories.split(" ")
|
178 |
+
index = 0
|
179 |
+
for model in sorted_cosine_scores_models:
|
180 |
+
scores_list.append(sorted_cosine_scores_models[model])
|
181 |
+
index += 1
|
182 |
+
|
183 |
+
if len(sorted_cosine_scores_models) == 2:
|
184 |
+
fig, (ax1, ax2) = plt.subplots(2)
|
185 |
+
|
186 |
+
categories_sorted = [
|
187 |
+
categories[scores_list[0][index][0]] for index in range(len(scores_list[0]))
|
188 |
+
]
|
189 |
+
sorted_scores = np.array(
|
190 |
+
[scores_list[0][index][1] for index in range(len(scores_list[0]))]
|
191 |
+
)
|
192 |
+
ax1.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%")
|
193 |
+
|
194 |
+
categories_sorted = [
|
195 |
+
categories[scores_list[1][index][0]] for index in range(len(scores_list[1]))
|
196 |
+
]
|
197 |
+
sorted_scores = np.array(
|
198 |
+
[scores_list[1][index][1] for index in range(len(scores_list[1]))]
|
199 |
+
)
|
200 |
+
ax2.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%")
|
201 |
+
|
202 |
+
st.pyplot(fig)
|
203 |
+
|
204 |
+
def plot_alatirchart(sorted_cosine_scores_models):
|
205 |
+
models = list(sorted_cosine_scores_models.keys())
|
206 |
+
tabs = st.tabs(models)
|
207 |
+
figs = {}
|
208 |
+
for model in models:
|
209 |
+
figs[model] = plot_piechart_helper(sorted_cosine_scores_models[model])
|
210 |
+
|
211 |
+
for index in range(len(tabs)):
|
212 |
+
with tabs[index]:
|
213 |
+
st.pyplot(figs[models[index]])
|
214 |
+
|
215 |
+
### Your Part To Complete: Follow the instructions in each function below to complete the similarity calculation between text embeddings
|
216 |
+
|
217 |
+
# Task I: Compute Cosine Similarity
|
218 |
+
def cosine_similarity(x, y):
|
219 |
+
"""
|
220 |
+
Exponentiated cosine similarity
|
221 |
+
1. Compute cosine similarity
|
222 |
+
2. Exponentiate cosine similarity
|
223 |
+
3. Return exponentiated cosine similarity
|
224 |
+
(20 pts)
|
225 |
+
"""
|
226 |
+
cosine_sim = np.dot(x, y) / (la.norm(x) * la.norm(y))
|
227 |
+
return np.exp(cosine_sim)
|
228 |
+
|
229 |
+
# Task II: Average Glove Embedding Calculation
|
230 |
+
def averaged_glove_embeddings_gdrive(sentence, word_index_dict, embeddings, model_type=50):
|
231 |
+
"""
|
232 |
+
Get averaged glove embeddings for a sentence
|
233 |
+
1. Split sentence into words
|
234 |
+
2. Get embeddings for each word
|
235 |
+
3. Add embeddings for each word
|
236 |
+
4. Divide by number of words
|
237 |
+
5. Return averaged embeddings
|
238 |
+
(30 pts)
|
239 |
+
"""
|
240 |
+
words = sentence.split()
|
241 |
+
embedding = np.zeros(int(model_type.split("d")[0]))
|
242 |
+
for word in words:
|
243 |
+
embedding += get_glove_embeddings(word, word_index_dict, embeddings, model_type)
|
244 |
+
return embedding / len(words)
|
245 |
+
|
246 |
+
# Task III: Sort the cosine similarity
|
247 |
+
def get_sorted_cosine_similarity(embeddings_metadata):
|
248 |
+
"""
|
249 |
+
Get sorted cosine similarity between input sentence and categories
|
250 |
+
Steps:
|
251 |
+
1. Get embeddings for input sentence
|
252 |
+
2. Get embeddings for categories (if not found, update category embeddings)
|
253 |
+
3. Compute cosine similarity between input sentence and categories
|
254 |
+
4. Sort cosine similarity
|
255 |
+
5. Return sorted cosine similarity
|
256 |
+
(50 pts)
|
257 |
+
"""
|
258 |
+
categories = st.session_state.categories.split(" ")
|
259 |
+
cosine_sim = {}
|
260 |
+
if embeddings_metadata["embedding_model"] == "glove":
|
261 |
+
word_index_dict = embeddings_metadata["word_index_dict"]
|
262 |
+
embeddings = embeddings_metadata["embeddings"]
|
263 |
+
model_type = embeddings_metadata["model_type"]
|
264 |
+
|
265 |
+
input_embedding = averaged_glove_embeddings_gdrive(st.session_state.text_search,
|
266 |
+
word_index_dict,
|
267 |
+
embeddings, model_type)
|
268 |
+
|
269 |
+
for index, category in enumerate(categories):
|
270 |
+
category_embedding = averaged_glove_embeddings_gdrive(category, word_index_dict, embeddings, model_type)
|
271 |
+
cosine_sim[index] = cosine_similarity(input_embedding, category_embedding)
|
272 |
+
|
273 |
+
else:
|
274 |
+
model_name = embeddings_metadata["model_name"]
|
275 |
+
if not "cat_embed_" + model_name in st.session_state:
|
276 |
+
get_category_embeddings(embeddings_metadata)
|
277 |
+
|
278 |
+
category_embeddings = st.session_state["cat_embed_" + model_name]
|
279 |
+
|
280 |
+
input_embedding = get_sentence_transformer_embeddings(st.session_state.text_search, model_name=model_name)
|
281 |
+
for index, category in enumerate(categories):
|
282 |
+
cosine_sim[index] = cosine_similarity(input_embedding, category_embeddings[category])
|
283 |
+
|
284 |
+
sorted_cosine_sim = sorted(cosine_sim.items(), key=lambda x: x[1], reverse=True)
|
285 |
+
return sorted_cosine_sim
|
286 |
+
|
287 |
+
### Below is the main function, creating the app demo for text search engine using the text embeddings.
|
288 |
+
|
289 |
+
if __name__ == "__main__":
|
290 |
+
# Initialize session state variables
|
291 |
+
if "categories" not in st.session_state:
|
292 |
+
st.session_state["categories"] = "Flowers Colors Cars Weather Food"
|
293 |
+
|
294 |
+
if "text_search" not in st.session_state:
|
295 |
+
st.session_state["text_search"] = "Roses are red, trucks are blue, and Seattle is grey right now"
|
296 |
+
|
297 |
+
st.sidebar.title("GloVe Twitter")
|
298 |
+
st.sidebar.markdown(
|
299 |
+
"""
|
300 |
+
GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Pretrained on
|
301 |
+
2 billion tweets with vocabulary size of 1.2 million. Download from [Stanford NLP](http://nlp.stanford.edu/data/glove.twitter.27B.zip).
|
302 |
+
|
303 |
+
Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. *GloVe: Global Vectors for Word Representation*.
|
304 |
+
"""
|
305 |
+
)
|
306 |
+
|
307 |
+
model_type = st.sidebar.selectbox("Choose the model", ("25d", "50d", "100d"), index=1)
|
308 |
+
|
309 |
+
st.title("Search Based Retrieval Demo")
|
310 |
+
st.subheader(
|
311 |
+
"Pass in space separated categories you want this search demo to be about."
|
312 |
+
)
|
313 |
+
st.text_input(
|
314 |
+
label="Categories", key="categories", value=st.session_state["categories"]
|
315 |
+
)
|
316 |
+
|
317 |
+
st.subheader("Pass in an input word or even a sentence")
|
318 |
+
st.text_input(
|
319 |
+
label="Input your sentence",
|
320 |
+
key="text_search",
|
321 |
+
value=st.session_state["text_search"],
|
322 |
+
)
|
323 |
+
|
324 |
+
embeddings_path = "embeddings_" + str(model_type) + "_temp.npy"
|
325 |
+
word_index_dict_path = "word_index_dict_" + str(model_type) + "_temp.pkl"
|
326 |
+
if not os.path.isfile(embeddings_path) or not os.path.isfile(word_index_dict_path):
|
327 |
+
with st.spinner("Downloading glove embeddings..."):
|
328 |
+
download_glove_embeddings_gdrive(model_type)
|
329 |
+
|
330 |
+
word_index_dict, embeddings = load_glove_embeddings_gdrive(model_type)
|
331 |
+
|
332 |
+
if st.session_state.text_search:
|
333 |
+
embeddings_metadata = {
|
334 |
+
"embedding_model": "glove",
|
335 |
+
"word_index_dict": word_index_dict,
|
336 |
+
"embeddings": embeddings,
|
337 |
+
"model_type": model_type,
|
338 |
+
}
|
339 |
+
with st.spinner("Obtaining Cosine similarity for Glove..."):
|
340 |
+
sorted_cosine_sim_glove = get_sorted_cosine_similarity(embeddings_metadata)
|
341 |
+
|
342 |
+
embeddings_metadata = {
|
343 |
+
"embedding_model": "transformers",
|
344 |
+
"model_name": "all-MiniLM-L6-v2"
|
345 |
+
}
|
346 |
+
with st.spinner("Obtaining Cosine similarity for 384d sentence transformer..."):
|
347 |
+
sorted_cosine_sim_transformer = get_sorted_cosine_similarity(embeddings_metadata)
|
348 |
+
|
349 |
+
st.subheader(
|
350 |
+
"Closest word I have between: "
|
351 |
+
+ st.session_state.categories
|
352 |
+
+ " as per different Embeddings"
|
353 |
+
)
|
354 |
+
|
355 |
+
plot_alatirchart(
|
356 |
+
{
|
357 |
+
"glove_" + str(model_type): sorted_cosine_sim_glove,
|
358 |
+
"sentence_transformer_384": sorted_cosine_sim_transformer,
|
359 |
+
}
|
360 |
+
)
|
361 |
+
|
362 |
+
st.write("")
|
363 |
+
st.write(
|
364 |
+
"Demo developed by [Your Name](https://www.linkedin.com/in/your_id/ - Optional)"
|
365 |
+
)
|
366 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gdown==5.2.0
|
2 |
+
matplotlib==3.9.2
|
3 |
+
sentence-transformers==3.4.0
|
4 |
+
streamlit==1.30.0
|
5 |
+
tf-keras
|