Files changed (1) hide show
  1. app.py +37 -34
app.py CHANGED
@@ -1,13 +1,16 @@
1
  import gradio as gr
 
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
 
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
 
10
- def respond(
 
11
  message,
12
  history: list[tuple[str, str]],
13
  system_message,
@@ -15,50 +18,50 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
19
 
 
 
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
  from huggingface_hub import InferenceClient
4
 
5
+ # ๊ฐ์ • ๋ถ„์„ ๋ชจ๋ธ ๋กœ๋“œ
6
+ sentiment_pipeline = pipeline("sentiment-analysis", model="beomi/KcELECTRA-base")
7
+
8
+ # ์ƒ์„ฑ ๋ชจ๋ธ (Zephyr)
9
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
10
 
11
 
12
+ # ๊ฐ์ • ๋ถ„์„ + ์žฌ์ž‘์„ฑ ํ•จ์ˆ˜
13
+ def rewrite_if_negative(
14
  message,
15
  history: list[tuple[str, str]],
16
  system_message,
 
18
  temperature,
19
  top_p,
20
  ):
21
+ #๊ฐ์ • ๋ถ„์„
22
+ result = sentiment_pipeline(message)[0]
23
+ label = result['label']
24
+ score = result['score']
25
 
26
+ #๋ฉ”์‹œ์ง€ ์ดˆ๊ธฐํ™”
27
+ messages = [{"role": "system", "content": system_message}]
28
  for val in history:
29
  if val[0]:
30
  messages.append({"role": "user", "content": val[0]})
31
  if val[1]:
32
  messages.append({"role": "assistant", "content": val[1]})
33
 
34
+ #๋ฌธ์žฅ ์žฌ์ž‘์„ฑ ์—ฌ๋ถ€ ํŒ๋‹จ
35
+ if label == "LABEL_1" and score > 0.8:
36
+ messages.append({"role": "user", "content": f"๋‹ค์Œ ๋ฌธ์žฅ์„ ๊ณต๊ฐ ๊ฐ€๋Š” ๋ง๋กœ ๋ฐ”๊ฟ”์ค˜: {message}"})
37
+ response = ""
38
+ for chunk in client.chat_completion(
39
+ messages,
40
+ max_tokens=max_tokens,
41
+ stream=True,
42
+ temperature=temperature,
43
+ top_p=top_p,
44
+ ):
45
+ token = chunk.choices[0].delta.content
46
+ response += token
47
+ yield response
48
+ else:
49
+ yield "ํ‘œํ˜„์ด ๊ดœ์ฐฎ."
50
 
 
 
 
 
 
 
 
 
51
 
52
+ # Gradio ์ธํ„ฐํŽ˜์ด์Šค ๊ตฌ์„ฑ
 
 
 
 
 
 
53
  demo = gr.ChatInterface(
54
+ fn=rewrite_if_negative,
55
  additional_inputs=[
56
+ gr.Textbox(value="๋„ˆ๋Š” ๋ถ€๋“œ๋Ÿฌ์šด ๋งํˆฌ๋กœ ๋งํ•˜๋Š” AI์•ผ.", label="System message"),
57
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
58
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
59
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
60
  ],
61
+ title="๋ฌธ์žฅ ์–ด์‹œ์Šคํ„ด์Šค",
62
+ description="๋ฌธ์žฅ์„ ์ž…๋ ฅํ•˜๋ฉด ๊ฐ์ •์„ ๋ถ„์„ํ•˜๊ณ , ๋„ˆ๋ฌด ๋ถ€์ •์ ์ธ ๋งํˆฌ๋Š” ๊ณต๊ฐ ๊ฐ€๋Š” ํ‘œํ˜„์œผ๋กœ ๋ฐ”๊ฟ”์คŒ",
63
+ theme="soft",
64
  )
65
 
 
66
  if __name__ == "__main__":
67
+ demo.launch()