Spaces:
Running
Running
| import torch | |
| import torch.nn.functional as F | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| import re | |
| import pandas as pd | |
| import gradio as gr | |
| # ----------------------------- | |
| # MODEL INITIALIZATION | |
| # ----------------------------- | |
| MODEL_NAME = "fakespot-ai/roberta-base-ai-text-detection-v1" | |
| tokenizer = None | |
| model = None | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| def get_model(): | |
| global tokenizer, model | |
| if model is None: | |
| print(f"Loading model: {MODEL_NAME} on {device}") | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
| dtype = torch.float32 | |
| if device.type == "cuda" and torch.cuda.is_bf16_supported(): | |
| dtype = torch.bfloat16 | |
| model = AutoModelForSequenceClassification.from_pretrained( | |
| MODEL_NAME, torch_dtype=dtype | |
| ).to(device).eval() | |
| return tokenizer, model | |
| # UPDATED THRESHOLD: Only 81% and above is flagged as AI | |
| THRESHOLD = 0.81 | |
| # ----------------------------- | |
| # PROTECT STRUCTURE | |
| # ----------------------------- | |
| ABBR = ["e.g", "i.e", "mr", "mrs", "ms", "dr", "prof", "vs", "etc", "fig", "al", "jr", "sr", "st", "inc", "ltd", "u.s", "u.k"] | |
| ABBR_REGEX = re.compile(r"\b(" + "|".join(map(re.escape, ABBR)) + r")\.", re.IGNORECASE) | |
| def _protect(text): | |
| text = text.replace("...", "⟨ELLIPSIS⟩") | |
| text = re.sub(r"(?<=\d)\.(?=\d)", "⟨DECIMAL⟩", text) | |
| text = ABBR_REGEX.sub(r"\1⟨ABBRDOT⟩", text) | |
| return text | |
| def _restore(text): | |
| return text.replace("⟨ABBRDOT⟩", ".").replace("⟨DECIMAL⟩", ".").replace("⟨ELLIPSIS⟩", "...") | |
| def split_preserving_structure(text): | |
| blocks = re.split(r"(\n+)", text) | |
| final_blocks = [] | |
| for block in blocks: | |
| if block.startswith("\n"): | |
| final_blocks.append(block) | |
| else: | |
| protected = _protect(block) | |
| parts = re.split(r"([.?!])(\s+)", protected) | |
| for i in range(0, len(parts), 3): | |
| sentence = parts[i] | |
| punct = parts[i+1] if i+1 < len(parts) else "" | |
| space = parts[i+2] if i+2 < len(parts) else "" | |
| if sentence.strip(): | |
| final_blocks.append(_restore(sentence + punct)) | |
| if space: | |
| final_blocks.append(space) | |
| return final_blocks | |
| # ----------------------------- | |
| # ANALYSIS | |
| # ----------------------------- | |
| def analyze(text): | |
| text = text.strip() | |
| if not text: | |
| return "—", "—", "<em>Please enter text...</em>", None | |
| word_count = len(text.split()) | |
| if word_count < 300: | |
| warning_msg = f"⚠️ <b>Insufficient Text:</b> Your input has {word_count} words. Please enter at least 300 words for an accurate analysis." | |
| return "Too Short", "N/A", f"<div style='color: #b80d0d; padding: 20px; border: 1px solid #b80d0d; border-radius: 8px;'>{warning_msg}</div>", None | |
| try: | |
| tok, mod = get_model() | |
| except Exception as e: | |
| return "ERROR", "0%", f"Failed to load model: {str(e)}", None | |
| blocks = split_preserving_structure(text) | |
| pure_sents_indices = [i for i, b in enumerate(blocks) if b.strip() and not b.startswith("\n")] | |
| pure_sents = [blocks[i] for i in pure_sents_indices] | |
| if not pure_sents: | |
| return "—", "—", "<em>No sentences detected.</em>", None | |
| windows = [] | |
| for i in range(len(pure_sents)): | |
| start = max(0, i - 1) | |
| end = min(len(pure_sents), i + 2) | |
| windows.append(" ".join(pure_sents[start:end])) | |
| inputs = tok(windows, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device) | |
| logits = mod(**inputs).logits | |
| probs = F.softmax(logits.float(), dim=-1)[:, 1].cpu().numpy().tolist() | |
| lengths = [len(s.split()) for s in pure_sents] | |
| total_words = sum(lengths) | |
| weighted_avg = sum(p * l for p, l in zip(probs, lengths)) / total_words if total_words > 0 else 0 | |
| # ----------------------------- | |
| # HTML RECONSTRUCTION | |
| # ----------------------------- | |
| highlighted_html = "<div style='font-family: sans-serif; line-height: 1.8;'>" | |
| prob_map = {idx: probs[i] for i, idx in enumerate(pure_sents_indices)} | |
| for i, block in enumerate(blocks): | |
| if block.startswith("\n") or block.isspace(): | |
| highlighted_html += block.replace("\n", "<br>") | |
| continue | |
| if i in prob_map: | |
| score = prob_map[i] | |
| # Logic: Red for > 0.81, Green for everything else (<= 0.81) | |
| if score >= THRESHOLD: | |
| color, bg = "#b80d0d", "rgba(184, 13, 13, 0.15)" # RED | |
| else: | |
| color, bg = "#11823b", "rgba(17, 130, 59, 0.15)" # GREEN | |
| highlighted_html += ( | |
| f"<span style='background:{bg}; padding:2px 4px; border-radius:4px; border-bottom: 2px solid {color};' " | |
| f"title='AI Probability: {score:.1%}'>" | |
| f"<b style='color:{color}; font-size: 0.8em;'>[{score:.0%}]</b> {block}</span>" | |
| ) | |
| else: | |
| highlighted_html += block | |
| highlighted_html += "</div>" | |
| # --- FINAL VERDICT --- | |
| if weighted_avg >= THRESHOLD: | |
| label = f"{weighted_avg:.0%} AI Content Detected" | |
| display_score = f"{weighted_avg:.1%}" | |
| else: | |
| label = "0 or * AI Content Detected" | |
| display_score = "*" | |
| df = pd.DataFrame({"Sentence": pure_sents, "AI Confidence": [f"{p:.1%}" for p in probs]}) | |
| return label, display_score, highlighted_html, df | |
| # ----------------------------- | |
| # GRADIO INTERFACE | |
| # ----------------------------- | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("## 🕵️ AI Detector Pro") | |
| gr.Markdown(f"Strict Analysis. Threshold: **{THRESHOLD*100:.0f}%**. Everything below this is considered Human.") | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| text_input = gr.Textbox(label="Paste Text", lines=12, placeholder="Minimum 300 words...") | |
| run_btn = gr.Button("Analyze", variant="primary") | |
| with gr.Column(scale=1): | |
| verdict_out = gr.Label(label="Verdict") | |
| score_out = gr.Label(label="Weighted AI Score") | |
| with gr.Tabs(): | |
| with gr.TabItem("Visual Heatmap"): | |
| html_out = gr.HTML() | |
| with gr.TabItem("Raw Data Breakdown"): | |
| table_out = gr.Dataframe(headers=["Sentence", "AI Confidence"], wrap=True) | |
| run_btn.click(analyze, inputs=text_input, outputs=[verdict_out, score_out, html_out, table_out]) | |
| if __name__ == "__main__": | |
| demo.launch() |