import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModelForSequenceClassification import re import pandas as pd import gradio as gr # ----------------------------- # MODEL INITIALIZATION # ----------------------------- MODEL_NAME = "fakespot-ai/roberta-base-ai-text-detection-v1" tokenizer = None model = None device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def get_model(): global tokenizer, model if model is None: print(f"Loading model: {MODEL_NAME} on {device}") tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) dtype = torch.float32 if device.type == "cuda" and torch.cuda.is_bf16_supported(): dtype = torch.bfloat16 model = AutoModelForSequenceClassification.from_pretrained( MODEL_NAME, torch_dtype=dtype ).to(device).eval() return tokenizer, model # UPDATED THRESHOLD: Only 81% and above is flagged as AI THRESHOLD = 0.81 # ----------------------------- # PROTECT STRUCTURE # ----------------------------- ABBR = ["e.g", "i.e", "mr", "mrs", "ms", "dr", "prof", "vs", "etc", "fig", "al", "jr", "sr", "st", "inc", "ltd", "u.s", "u.k"] ABBR_REGEX = re.compile(r"\b(" + "|".join(map(re.escape, ABBR)) + r")\.", re.IGNORECASE) def _protect(text): text = text.replace("...", "⟨ELLIPSIS⟩") text = re.sub(r"(?<=\d)\.(?=\d)", "⟨DECIMAL⟩", text) text = ABBR_REGEX.sub(r"\1⟨ABBRDOT⟩", text) return text def _restore(text): return text.replace("⟨ABBRDOT⟩", ".").replace("⟨DECIMAL⟩", ".").replace("⟨ELLIPSIS⟩", "...") def split_preserving_structure(text): blocks = re.split(r"(\n+)", text) final_blocks = [] for block in blocks: if block.startswith("\n"): final_blocks.append(block) else: protected = _protect(block) parts = re.split(r"([.?!])(\s+)", protected) for i in range(0, len(parts), 3): sentence = parts[i] punct = parts[i+1] if i+1 < len(parts) else "" space = parts[i+2] if i+2 < len(parts) else "" if sentence.strip(): final_blocks.append(_restore(sentence + punct)) if space: final_blocks.append(space) return final_blocks # ----------------------------- # ANALYSIS # ----------------------------- @torch.inference_mode() def analyze(text): text = text.strip() if not text: return "—", "—", "Please enter text...", None word_count = len(text.split()) if word_count < 300: warning_msg = f"⚠️ Insufficient Text: Your input has {word_count} words. Please enter at least 300 words for an accurate analysis." return "Too Short", "N/A", f"
{warning_msg}
", None try: tok, mod = get_model() except Exception as e: return "ERROR", "0%", f"Failed to load model: {str(e)}", None blocks = split_preserving_structure(text) pure_sents_indices = [i for i, b in enumerate(blocks) if b.strip() and not b.startswith("\n")] pure_sents = [blocks[i] for i in pure_sents_indices] if not pure_sents: return "—", "—", "No sentences detected.", None windows = [] for i in range(len(pure_sents)): start = max(0, i - 1) end = min(len(pure_sents), i + 2) windows.append(" ".join(pure_sents[start:end])) inputs = tok(windows, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device) logits = mod(**inputs).logits probs = F.softmax(logits.float(), dim=-1)[:, 1].cpu().numpy().tolist() lengths = [len(s.split()) for s in pure_sents] total_words = sum(lengths) weighted_avg = sum(p * l for p, l in zip(probs, lengths)) / total_words if total_words > 0 else 0 # ----------------------------- # HTML RECONSTRUCTION # ----------------------------- highlighted_html = "
" prob_map = {idx: probs[i] for i, idx in enumerate(pure_sents_indices)} for i, block in enumerate(blocks): if block.startswith("\n") or block.isspace(): highlighted_html += block.replace("\n", "
") continue if i in prob_map: score = prob_map[i] # Logic: Red for > 0.81, Green for everything else (<= 0.81) if score >= THRESHOLD: color, bg = "#b80d0d", "rgba(184, 13, 13, 0.15)" # RED else: color, bg = "#11823b", "rgba(17, 130, 59, 0.15)" # GREEN highlighted_html += ( f"" f"[{score:.0%}] {block}" ) else: highlighted_html += block highlighted_html += "
" # --- FINAL VERDICT --- if weighted_avg >= THRESHOLD: label = f"{weighted_avg:.0%} AI Content Detected" display_score = f"{weighted_avg:.1%}" else: label = "0 or * AI Content Detected" display_score = "*" df = pd.DataFrame({"Sentence": pure_sents, "AI Confidence": [f"{p:.1%}" for p in probs]}) return label, display_score, highlighted_html, df # ----------------------------- # GRADIO INTERFACE # ----------------------------- with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("## 🕵️ AI Detector Pro") gr.Markdown(f"Strict Analysis. Threshold: **{THRESHOLD*100:.0f}%**. Everything below this is considered Human.") with gr.Row(): with gr.Column(scale=3): text_input = gr.Textbox(label="Paste Text", lines=12, placeholder="Minimum 300 words...") run_btn = gr.Button("Analyze", variant="primary") with gr.Column(scale=1): verdict_out = gr.Label(label="Verdict") score_out = gr.Label(label="Weighted AI Score") with gr.Tabs(): with gr.TabItem("Visual Heatmap"): html_out = gr.HTML() with gr.TabItem("Raw Data Breakdown"): table_out = gr.Dataframe(headers=["Sentence", "AI Confidence"], wrap=True) run_btn.click(analyze, inputs=text_input, outputs=[verdict_out, score_out, html_out, table_out]) if __name__ == "__main__": demo.launch()