File size: 4,842 Bytes
54ba978
cc6f54d
692a239
cc6f54d
73f52cd
5cecbb0
692a239
73f52cd
5cecbb0
 
73f52cd
5cecbb0
54ba978
 
 
 
 
 
 
bec8f6d
5cecbb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc6f54d
5cecbb0
 
54ba978
cc6f54d
 
 
 
 
 
 
4bdd945
 
 
 
cc6f54d
 
b14c8d8
 
 
 
 
 
 
 
 
 
 
 
 
cc6f54d
 
 
 
 
 
 
692a239
4bdd945
 
54ba978
cc6f54d
b2d905e
cc6f54d
73f52cd
cc6f54d
54ba978
4bdd945
5cecbb0
fd78eab
4bdd945
54ba978
4bdd945
 
5cecbb0
 
 
 
363f32b
5cecbb0
54ba978
cc6f54d
692a239
54ba978
 
 
 
 
5cecbb0
54ba978
 
 
4bdd945
 
5cecbb0
54ba978
fd78eab
73f52cd
692a239
73f52cd
 
cc6f54d
4bdd945
5cecbb0
 
73f52cd
 
 
54ba978
5cecbb0
 
 
 
e50e821
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import time
import threading
import torch
import gradio as gr
from huggingface_hub import snapshot_download
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer

MODEL_REPO = "daniel-dona/gemma-3-270m-it"
LOCAL_DIR = os.path.join(os.getcwd(), "local_model")

os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1")
os.environ.setdefault("OMP_NUM_THREADS", str(os.cpu_count() or 1))
os.environ.setdefault("MKL_NUM_THREADS", os.environ["OMP_NUM_THREADS"])
os.environ.setdefault("OMP_PROC_BIND", "TRUE")

torch.set_num_threads(int(os.environ["OMP_NUM_THREADS"]))
torch.set_num_interop_threads(1)
torch.set_float32_matmul_precision("high")

def ensure_local_model(repo_id: str, local_dir: str, tries: int = 3, sleep_s: float = 3.0) -> str:
    os.makedirs(local_dir, exist_ok=True)
    for i in range(tries):
        try:
            snapshot_download(
                repo_id=repo_id,
                local_dir=local_dir,
                local_dir_use_symlinks=False,
                resume_download=True,
                allow_patterns=["*.json", "*.model", "*.safetensors", "*.bin", "*.txt", "*.py"]
            )
            return local_dir
        except Exception:
            if i == tries - 1:
                raise
            time.sleep(sleep_s * (2 ** i))
    return local_dir

model_path = ensure_local_model(MODEL_REPO, LOCAL_DIR)

tokenizer = AutoTokenizer.from_pretrained(model_path, local_files_only=True)
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    local_files_only=True,
    torch_dtype=torch.float32,
    device_map=None
)
model.eval()

def build_prompt(message, history, system_message, max_ctx_tokens=1024):
    msgs = [{"role": "system", "content": system_message}]
    for u, a in history:
        if u:
            msgs.append({"role": "user", "content": u})
        if a:
            msgs.append({"role": "assistant", "content": a})
    msgs.append({"role": "user", "content": message})
    while True:
        chat_template = """{% for m in messages %}
        {{ m['role'] }}: {{ m['content'] }}
        {% endfor %}
        Assistant:"""
        
        text = tokenizer.apply_chat_template(
            msgs,
            chat_template=chat_template,
            tokenize=False,
            add_generation_prompt=True
        )


        if len(tokenizer(text, add_special_tokens=False).input_ids) <= max_ctx_tokens:
            return text
        for i in range(1, len(msgs)):
            if msgs[i]["role"] != "system":
                del msgs[i:i+2]
                break

def respond_stream(message, history, system_message, max_tokens, temperature, top_p):
    text = build_prompt(message, history, system_message)
    inputs = tokenizer([text], return_tensors="pt").to(model.device)
    do_sample = bool(temperature and temperature > 0.0)
    gen_kwargs = dict(
        max_new_tokens=max_tokens,
        do_sample=do_sample,
        top_p=top_p,
        temperature=temperature if do_sample else None,
        use_cache=True,
        eos_token_id=tokenizer.eos_token_id,
        pad_token_id=tokenizer.eos_token_id
    )
    try:
        streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True, skip_prompt=True)
    except TypeError:
        streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
    thread = threading.Thread(
        target=model.generate,
        kwargs={**inputs, **{k: v for k, v in gen_kwargs.items() if v is not None}, "streamer": streamer}
    )
    partial_text = ""
    token_count = 0
    start_time = None
    with torch.inference_mode():
        thread.start()
        try:
            for chunk in streamer:
                if start_time is None:
                    start_time = time.time()
                partial_text += chunk
                token_count += 1
                yield partial_text
        finally:
            thread.join()
    end_time = time.time() if start_time is not None else time.time()
    duration = max(1e-6, end_time - start_time) if start_time else 0.0
    tps = (token_count / duration) if duration > 0 else 0.0
    yield partial_text + f"\n\n⚡ Hız: {tps:.2f} token/sn"

demo = gr.ChatInterface(
    respond_stream,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.0, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
    ]
)

if __name__ == "__main__":
    with torch.inference_mode():
        _ = model.generate(
            **tokenizer(["Hi"], return_tensors="pt").to(model.device),
            max_new_tokens=1, do_sample=False, use_cache=True
        )
    demo.queue(max_size=32).launch()