Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,99 +1,95 @@
|
|
1 |
-
import
|
|
|
2 |
import gradio as gr
|
3 |
-
from transformers import
|
4 |
|
5 |
-
|
6 |
|
7 |
-
#
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
for
|
24 |
-
if
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
max_new_tokens=max_tokens,
|
34 |
-
|
35 |
top_p=top_p,
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
generated_text = response[0]['generated_text']
|
40 |
-
|
41 |
-
yield generated_text"""
|
42 |
-
|
43 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
44 |
-
model = AutoModelForCausalLM.from_pretrained(
|
45 |
-
model_name,
|
46 |
-
torch_dtype="auto",
|
47 |
-
device_map="auto"
|
48 |
)
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
)
|
55 |
|
56 |
-
|
|
|
57 |
|
58 |
-
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
generated_ids = model.generate(
|
65 |
-
**model_inputs,
|
66 |
-
max_new_tokens=max_tokens,
|
67 |
-
do_sample=sample,
|
68 |
-
top_p=top_p,
|
69 |
-
temperature=temperature
|
70 |
-
)
|
71 |
-
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
72 |
|
73 |
-
content = tokenizer.decode(output_ids, skip_special_tokens=True).strip("\n")
|
74 |
-
|
75 |
-
return content
|
76 |
-
|
77 |
-
|
78 |
-
"""
|
79 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
80 |
-
"""
|
81 |
demo = gr.ChatInterface(
|
82 |
respond,
|
83 |
additional_inputs=[
|
84 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
85 |
-
gr.Slider(minimum=1, maximum=2048, value=
|
86 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
87 |
-
gr.Slider(
|
88 |
-
minimum=0.1,
|
89 |
-
maximum=1.0,
|
90 |
-
value=0.95,
|
91 |
-
step=0.05,
|
92 |
-
label="Top-p (nucleus sampling)",
|
93 |
-
),
|
94 |
],
|
95 |
)
|
96 |
|
97 |
-
|
98 |
if __name__ == "__main__":
|
99 |
demo.launch()
|
|
|
1 |
+
import time
|
2 |
+
import torch
|
3 |
import gradio as gr
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
6 |
+
MODEL_NAME = "google/gemma-3-270m-it"
|
7 |
|
8 |
+
# CPU optimizasyonları
|
9 |
+
torch.set_num_threads(torch.get_num_threads()) # tüm çekirdekleri kullan
|
10 |
+
torch.set_float32_matmul_precision("high") # matmul hızını artır
|
11 |
|
12 |
+
# Model/Tokenizer global yükleme
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(
|
15 |
+
MODEL_NAME,
|
16 |
+
torch_dtype=torch.float32, # CPU'da float32
|
17 |
+
device_map=None
|
18 |
+
)
|
19 |
+
model.eval()
|
20 |
+
|
21 |
+
# Kullanıcı bazlı KV cache
|
22 |
+
sessions = {} # {user_id: past_key_values}
|
23 |
+
|
24 |
+
def build_prompt(message, history, system_message, max_ctx_tokens=1024):
|
25 |
+
msgs = [{"role": "system", "content": system_message}]
|
26 |
+
for u, a in history:
|
27 |
+
if u: msgs.append({"role": "user", "content": u})
|
28 |
+
if a: msgs.append({"role": "assistant", "content": a})
|
29 |
+
msgs.append({"role": "user", "content": message})
|
30 |
+
|
31 |
+
# Token bütçesi ile kırpma
|
32 |
+
while True:
|
33 |
+
text = tokenizer.apply_chat_template(msgs, tokenize=False, add_generation_prompt=True)
|
34 |
+
if len(tokenizer(text, add_special_tokens=False).input_ids) <= max_ctx_tokens:
|
35 |
+
return text
|
36 |
+
# En eski user+assistant çiftini at
|
37 |
+
for i in range(1, len(msgs)):
|
38 |
+
if msgs[i]["role"] != "system":
|
39 |
+
del msgs[i:i+2]
|
40 |
+
break
|
41 |
+
|
42 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
43 |
+
user_id = "default" # API bağlarsan burada kullanıcı ID'si ile değiştir
|
44 |
+
past = sessions.get(user_id)
|
45 |
+
|
46 |
+
if past is None:
|
47 |
+
# İlk mesaj → tüm prompt
|
48 |
+
text = build_prompt(message, history, system_message)
|
49 |
+
inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
50 |
+
else:
|
51 |
+
# Sadece yeni mesajı encode et
|
52 |
+
inputs = tokenizer([message], return_tensors="pt").to(model.device)
|
53 |
+
|
54 |
+
do_sample = temperature > 0
|
55 |
+
gen_kwargs = dict(
|
56 |
max_new_tokens=max_tokens,
|
57 |
+
do_sample=do_sample,
|
58 |
top_p=top_p,
|
59 |
+
temperature=temperature if do_sample else None,
|
60 |
+
use_cache=True,
|
61 |
+
past_key_values=past
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
)
|
63 |
|
64 |
+
start_time = time.time()
|
65 |
+
with torch.inference_mode():
|
66 |
+
outputs = model.generate(**inputs, **{k: v for k, v in gen_kwargs.items() if v is not None},
|
67 |
+
return_dict_in_generate=True, output_scores=False)
|
68 |
+
end_time = time.time()
|
69 |
|
70 |
+
# KV cache güncelle
|
71 |
+
sessions[user_id] = outputs.past_key_values
|
72 |
|
73 |
+
# Yanıtı decode et
|
74 |
+
new_tokens = outputs.sequences[0][inputs["input_ids"].shape[1]:]
|
75 |
+
content = tokenizer.decode(new_tokens, skip_special_tokens=True).strip("\n")
|
76 |
|
77 |
+
# T/S hesapla
|
78 |
+
token_count = len(new_tokens)
|
79 |
+
elapsed = end_time - start_time
|
80 |
+
tps = token_count / elapsed if elapsed > 0 else 0
|
81 |
|
82 |
+
return f"{content}\n\n⚡ **Hız:** {tps:.2f} token/sn"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
demo = gr.ChatInterface(
|
85 |
respond,
|
86 |
additional_inputs=[
|
87 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
88 |
+
gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"),
|
89 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
90 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
],
|
92 |
)
|
93 |
|
|
|
94 |
if __name__ == "__main__":
|
95 |
demo.launch()
|