CommunityLawn / app.py
Unfaithful's picture
Update app.py
7fb2a12 verified
import os
import time
import subprocess
import requests
import traceback
import gradio as gr
# Node-related files stored directly in Python dictionaries
MAIN_FILES = {
'.env': """HF_API_TOKEN=YOUR_HF_API_TOKEN_HERE
NODE_ENV=production
PORT=3000
RATE_LIMIT_WINDOW_MS=60000
RATE_LIMIT_MAX=100
HF_API_URL=https://api-inference.huggingface.co/models/distilbert-base-uncased-finetuned-sst-2-english
""",
'package.json': """{
"name": "compassionate-community",
"version": "1.0.0",
"description": "A sentiment-based story ordering web app",
"main": "server.js",
"scripts": {
"start": "node server.js"
},
"dependencies": {
"cors": "^2.8.5",
"dotenv": "^16.0.3",
"express": "^4.18.2",
"helmet": "^6.0.1",
"node-fetch": "^3.3.1",
"pino": "^8.5.0",
"pino-pretty": "^10.0.0",
"express-rate-limit": "^6.7.0"
},
"engines": {
"node": ">=16.0.0"
}
}
""",
'server.js': """const express = require('express');
const helmet = require('helmet');
const cors = require('cors');
const rateLimit = require('express-rate-limit');
const { port, nodeEnv, rateLimitWindowMs, rateLimitMax } = require('./config');
const sentimentRoutes = require('./routes/sentiment');
const logger = require('./logger');
const app = express();
app.use(helmet());
app.use(cors());
app.use(express.json());
const limiter = rateLimit({
windowMs: rateLimitWindowMs,
max: rateLimitMax,
message: { error: 'Too many requests, please try again later' }
});
app.use(limiter);
app.use('/sentiment', sentimentRoutes);
app.use(express.static('public'));
app.use((req,res)=>{
res.status(404).json({error:'Not Found'});
});
app.use((err,req,res,next)=>{
logger.error({ err }, 'Unhandled error');
res.status(500).json({error:'Internal Server Error'});
});
app.listen(port, () => {
logger.info(`Server running on http://localhost:${port} in ${nodeEnv} mode`);
});
""",
'config.js': """require('dotenv').config();
const requiredVars = ['HF_API_TOKEN', 'HF_API_URL', 'PORT', 'RATE_LIMIT_WINDOW_MS', 'RATE_LIMIT_MAX'];
requiredVars.forEach(v => {
if (!process.env[v]) {
console.error(`ERROR: Missing required environment variable ${v}`);
process.exit(1);
}
});
module.exports = {
hfApiToken: process.env.HF_API_TOKEN,
hfApiUrl: process.env.HF_API_URL,
port: process.env.PORT,
rateLimitWindowMs: parseInt(process.env.RATE_LIMIT_WINDOW_MS, 10),
rateLimitMax: parseInt(process.env.RATE_LIMIT_MAX, 10),
nodeEnv: process.env.NODE_ENV || 'development'
};
""",
'logger.js': """const pino = require('pino');
module.exports = pino({
level: process.env.NODE_ENV === 'production' ? 'info' : 'debug',
transport: process.env.NODE_ENV !== 'production' ? {
target: 'pino-pretty',
options: { colorize: true }
} : undefined
});
""",
'routes/sentiment.js': """const express = require('express');
const router = express.Router();
const { getSentiment } = require('../utils/huggingface');
const logger = require('../logger');
router.post('/', async (req, res) => {
const { text } = req.body;
if (!text) {
return res.status(400).json({ error: 'No text provided' });
}
try {
const sentiment = await getSentiment(text);
return res.json({ sentiment });
} catch (err) {
logger.error({ err }, 'Error fetching sentiment');
return res.status(500).json({ error: 'Internal server error' });
}
});
module.exports = router;
""",
'utils/huggingface.js': """const fetch = require('node-fetch');
const { hfApiToken, hfApiUrl } = require('../config');
const logger = require('../logger');
async function getSentiment(text) {
const response = await fetch(hfApiUrl, {
method: 'POST',
headers: {
'Authorization': `Bearer ${hfApiToken}`,
'Content-Type': 'application/json'
},
body: JSON.stringify({ inputs: text })
});
if (!response.ok) {
logger.error(`Hugging Face API error: ${response.status} - ${response.statusText}`);
throw new Error(`HF API request failed with status ${response.status}`);
}
const data = await response.json();
if (!Array.isArray(data) || !data[0]) {
throw new Error('Unexpected HF API response format');
}
const { label, score } = data[0];
return label === 'NEGATIVE' ? 1 - score : score;
}
module.exports = { getSentiment };
""",
'Dockerfile': """FROM node:18-alpine
WORKDIR /app
COPY package*.json ./
RUN npm install --production
COPY . .
EXPOSE 3000
CMD ["npm", "start"]
""",
'README.md': """# Compassionate Community
A sentiment-based web service using Hugging Face.
Add your HF token to .env or set it as a Space secret.
"""
}
PUBLIC_FILES = {
'index.html': """<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8"/>
<meta name="viewport" content="width=device-width,initial-scale=1.0"/>
<title>Compassionate Community</title>
<link rel="stylesheet" href="style.css"/>
</head>
<body>
<h1>Compassionate Community</h1>
<p>This page served by Node.js backend. Use the Gradio interface to test sentiment analysis.</p>
</body>
</html>
""",
'style.css': """body {
font-family: Arial, sans-serif;
margin: 20px;
background: #f7f7f7;
}
h1 {
font-size: 24px;
margin-bottom: 10px;
}
"""
}
def create_project_files():
logs = []
base_dir = "compassionate-community"
try:
# Check for HF_API_TOKEN from secret (Space)
hf_api_token = os.getenv("HF_API_TOKEN", None)
if not os.path.exists(base_dir):
os.makedirs(base_dir)
logs.append(f"Created directory: {base_dir}")
for fname, content in MAIN_FILES.items():
fpath = os.path.join(base_dir, fname)
if not os.path.exists(fpath):
if fname == '.env' and hf_api_token:
content = content.replace("YOUR_HF_API_TOKEN_HERE", hf_api_token)
with open(fpath, 'w', encoding='utf-8') as f:
f.write(content)
logs.append(f"Created file: {fpath}")
public_dir = os.path.join(base_dir, "public")
if not os.path.exists(public_dir):
os.makedirs(public_dir)
logs.append(f"Created directory: {public_dir}")
for fname, content in PUBLIC_FILES.items():
fpath = os.path.join(public_dir, fname)
if not os.path.exists(fpath):
with open(fpath, 'w', encoding='utf-8') as f:
f.write(content)
logs.append(f"Created file: {fpath}")
logs.append("Project structure set up successfully!")
except Exception as e:
logs.append("ERROR during setup:")
logs.append(str(e))
logs.append(traceback.format_exc())
return "\n".join(logs)
def start_node_server():
base_dir = "compassionate-community"
# Check if token is set
with open(os.path.join(base_dir, '.env'), 'r', encoding='utf-8') as envf:
env_content = envf.read()
if "YOUR_HF_API_TOKEN_HERE" in env_content:
return "No valid HF_API_TOKEN provided. Please set it as a secret or edit .env."
try:
subprocess.check_call(["npm", "install"], cwd=base_dir)
except Exception as e:
return f"Failed npm install: {e}"
subprocess.Popen(["npm", "start"], cwd=base_dir)
# Wait up to 30s for Node server to start
for i in range(30):
try:
r = requests.get("http://localhost:3000")
if r.status_code in (200, 404):
return "Node server running at http://localhost:3000"
except:
pass
time.sleep(1)
return "Node server did not start within 30 seconds."
def get_sentiment(text):
# Check token again
with open("compassionate-community/.env", 'r', encoding='utf-8') as envf:
env_content = envf.read()
if "YOUR_HF_API_TOKEN_HERE" in env_content:
return "Warning: No HF_API_TOKEN set. Cannot perform sentiment analysis."
url = "http://localhost:3000/sentiment"
try:
r = requests.post(url, json={"text": text}, timeout=10)
if r.status_code == 200:
data = r.json()
return f"Sentiment score: {data['sentiment']:.2f}"
else:
return f"Error: {r.status_code} {r.text}"
except Exception as e:
return f"Request failed: {e}"
setup_logs = create_project_files()
server_logs = start_node_server()
def query_interface(input_text):
return get_sentiment(input_text)
with gr.Blocks() as demo:
gr.Markdown("# Compassionate Community Full Service\n")
gr.Markdown("**Setup Logs:**")
gr.Textbox(value=setup_logs, label="Setup Logs", interactive=False)
gr.Markdown("**Server Status:**")
gr.Textbox(value=server_logs, label="Server Status", interactive=False)
gr.Markdown("**Test the Sentiment Service:**")
input_text = gr.Textbox(placeholder="Enter text describing a struggle...")
output = gr.Textbox(label="Output")
run_button = gr.Button("Analyze Sentiment")
run_button.click(query_interface, inputs=input_text, outputs=output)
demo.launch(server_name="0.0.0.0", server_port=7860)