Spaces:
Runtime error
Runtime error
File size: 9,068 Bytes
b729373 7fb2a12 b729373 ee35602 b729373 ee35602 b729373 ee35602 b729373 7fb2a12 b729373 ee35602 b729373 ee35602 b729373 ee35602 b729373 ee35602 b729373 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
import os
import time
import subprocess
import requests
import traceback
import gradio as gr
# Node-related files stored directly in Python dictionaries
MAIN_FILES = {
'.env': """HF_API_TOKEN=YOUR_HF_API_TOKEN_HERE
NODE_ENV=production
PORT=3000
RATE_LIMIT_WINDOW_MS=60000
RATE_LIMIT_MAX=100
HF_API_URL=https://api-inference.huggingface.co/models/distilbert-base-uncased-finetuned-sst-2-english
""",
'package.json': """{
"name": "compassionate-community",
"version": "1.0.0",
"description": "A sentiment-based story ordering web app",
"main": "server.js",
"scripts": {
"start": "node server.js"
},
"dependencies": {
"cors": "^2.8.5",
"dotenv": "^16.0.3",
"express": "^4.18.2",
"helmet": "^6.0.1",
"node-fetch": "^3.3.1",
"pino": "^8.5.0",
"pino-pretty": "^10.0.0",
"express-rate-limit": "^6.7.0"
},
"engines": {
"node": ">=16.0.0"
}
}
""",
'server.js': """const express = require('express');
const helmet = require('helmet');
const cors = require('cors');
const rateLimit = require('express-rate-limit');
const { port, nodeEnv, rateLimitWindowMs, rateLimitMax } = require('./config');
const sentimentRoutes = require('./routes/sentiment');
const logger = require('./logger');
const app = express();
app.use(helmet());
app.use(cors());
app.use(express.json());
const limiter = rateLimit({
windowMs: rateLimitWindowMs,
max: rateLimitMax,
message: { error: 'Too many requests, please try again later' }
});
app.use(limiter);
app.use('/sentiment', sentimentRoutes);
app.use(express.static('public'));
app.use((req,res)=>{
res.status(404).json({error:'Not Found'});
});
app.use((err,req,res,next)=>{
logger.error({ err }, 'Unhandled error');
res.status(500).json({error:'Internal Server Error'});
});
app.listen(port, () => {
logger.info(`Server running on http://localhost:${port} in ${nodeEnv} mode`);
});
""",
'config.js': """require('dotenv').config();
const requiredVars = ['HF_API_TOKEN', 'HF_API_URL', 'PORT', 'RATE_LIMIT_WINDOW_MS', 'RATE_LIMIT_MAX'];
requiredVars.forEach(v => {
if (!process.env[v]) {
console.error(`ERROR: Missing required environment variable ${v}`);
process.exit(1);
}
});
module.exports = {
hfApiToken: process.env.HF_API_TOKEN,
hfApiUrl: process.env.HF_API_URL,
port: process.env.PORT,
rateLimitWindowMs: parseInt(process.env.RATE_LIMIT_WINDOW_MS, 10),
rateLimitMax: parseInt(process.env.RATE_LIMIT_MAX, 10),
nodeEnv: process.env.NODE_ENV || 'development'
};
""",
'logger.js': """const pino = require('pino');
module.exports = pino({
level: process.env.NODE_ENV === 'production' ? 'info' : 'debug',
transport: process.env.NODE_ENV !== 'production' ? {
target: 'pino-pretty',
options: { colorize: true }
} : undefined
});
""",
'routes/sentiment.js': """const express = require('express');
const router = express.Router();
const { getSentiment } = require('../utils/huggingface');
const logger = require('../logger');
router.post('/', async (req, res) => {
const { text } = req.body;
if (!text) {
return res.status(400).json({ error: 'No text provided' });
}
try {
const sentiment = await getSentiment(text);
return res.json({ sentiment });
} catch (err) {
logger.error({ err }, 'Error fetching sentiment');
return res.status(500).json({ error: 'Internal server error' });
}
});
module.exports = router;
""",
'utils/huggingface.js': """const fetch = require('node-fetch');
const { hfApiToken, hfApiUrl } = require('../config');
const logger = require('../logger');
async function getSentiment(text) {
const response = await fetch(hfApiUrl, {
method: 'POST',
headers: {
'Authorization': `Bearer ${hfApiToken}`,
'Content-Type': 'application/json'
},
body: JSON.stringify({ inputs: text })
});
if (!response.ok) {
logger.error(`Hugging Face API error: ${response.status} - ${response.statusText}`);
throw new Error(`HF API request failed with status ${response.status}`);
}
const data = await response.json();
if (!Array.isArray(data) || !data[0]) {
throw new Error('Unexpected HF API response format');
}
const { label, score } = data[0];
return label === 'NEGATIVE' ? 1 - score : score;
}
module.exports = { getSentiment };
""",
'Dockerfile': """FROM node:18-alpine
WORKDIR /app
COPY package*.json ./
RUN npm install --production
COPY . .
EXPOSE 3000
CMD ["npm", "start"]
""",
'README.md': """# Compassionate Community
A sentiment-based web service using Hugging Face.
Add your HF token to .env or set it as a Space secret.
"""
}
PUBLIC_FILES = {
'index.html': """<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8"/>
<meta name="viewport" content="width=device-width,initial-scale=1.0"/>
<title>Compassionate Community</title>
<link rel="stylesheet" href="style.css"/>
</head>
<body>
<h1>Compassionate Community</h1>
<p>This page served by Node.js backend. Use the Gradio interface to test sentiment analysis.</p>
</body>
</html>
""",
'style.css': """body {
font-family: Arial, sans-serif;
margin: 20px;
background: #f7f7f7;
}
h1 {
font-size: 24px;
margin-bottom: 10px;
}
"""
}
def create_project_files():
logs = []
base_dir = "compassionate-community"
try:
# Check for HF_API_TOKEN from secret (Space)
hf_api_token = os.getenv("HF_API_TOKEN", None)
if not os.path.exists(base_dir):
os.makedirs(base_dir)
logs.append(f"Created directory: {base_dir}")
for fname, content in MAIN_FILES.items():
fpath = os.path.join(base_dir, fname)
if not os.path.exists(fpath):
if fname == '.env' and hf_api_token:
content = content.replace("YOUR_HF_API_TOKEN_HERE", hf_api_token)
with open(fpath, 'w', encoding='utf-8') as f:
f.write(content)
logs.append(f"Created file: {fpath}")
public_dir = os.path.join(base_dir, "public")
if not os.path.exists(public_dir):
os.makedirs(public_dir)
logs.append(f"Created directory: {public_dir}")
for fname, content in PUBLIC_FILES.items():
fpath = os.path.join(public_dir, fname)
if not os.path.exists(fpath):
with open(fpath, 'w', encoding='utf-8') as f:
f.write(content)
logs.append(f"Created file: {fpath}")
logs.append("Project structure set up successfully!")
except Exception as e:
logs.append("ERROR during setup:")
logs.append(str(e))
logs.append(traceback.format_exc())
return "\n".join(logs)
def start_node_server():
base_dir = "compassionate-community"
# Check if token is set
with open(os.path.join(base_dir, '.env'), 'r', encoding='utf-8') as envf:
env_content = envf.read()
if "YOUR_HF_API_TOKEN_HERE" in env_content:
return "No valid HF_API_TOKEN provided. Please set it as a secret or edit .env."
try:
subprocess.check_call(["npm", "install"], cwd=base_dir)
except Exception as e:
return f"Failed npm install: {e}"
subprocess.Popen(["npm", "start"], cwd=base_dir)
# Wait up to 30s for Node server to start
for i in range(30):
try:
r = requests.get("http://localhost:3000")
if r.status_code in (200, 404):
return "Node server running at http://localhost:3000"
except:
pass
time.sleep(1)
return "Node server did not start within 30 seconds."
def get_sentiment(text):
# Check token again
with open("compassionate-community/.env", 'r', encoding='utf-8') as envf:
env_content = envf.read()
if "YOUR_HF_API_TOKEN_HERE" in env_content:
return "Warning: No HF_API_TOKEN set. Cannot perform sentiment analysis."
url = "http://localhost:3000/sentiment"
try:
r = requests.post(url, json={"text": text}, timeout=10)
if r.status_code == 200:
data = r.json()
return f"Sentiment score: {data['sentiment']:.2f}"
else:
return f"Error: {r.status_code} {r.text}"
except Exception as e:
return f"Request failed: {e}"
setup_logs = create_project_files()
server_logs = start_node_server()
def query_interface(input_text):
return get_sentiment(input_text)
with gr.Blocks() as demo:
gr.Markdown("# Compassionate Community Full Service\n")
gr.Markdown("**Setup Logs:**")
gr.Textbox(value=setup_logs, label="Setup Logs", interactive=False)
gr.Markdown("**Server Status:**")
gr.Textbox(value=server_logs, label="Server Status", interactive=False)
gr.Markdown("**Test the Sentiment Service:**")
input_text = gr.Textbox(placeholder="Enter text describing a struggle...")
output = gr.Textbox(label="Output")
run_button = gr.Button("Analyze Sentiment")
run_button.click(query_interface, inputs=input_text, outputs=output)
demo.launch(server_name="0.0.0.0", server_port=7860) |