Spaces:
Sleeping
Sleeping
# ------------------------------------------ | |
# TextDiffuser-2: Unleashing the Power of Language Models for Text Rendering | |
# Paper Link: https://arxiv.org/abs/2311.16465 | |
# Code Link: https://github.com/microsoft/unilm/tree/master/textdiffuser-2 | |
# Copyright (c) Microsoft Corporation. | |
# ------------------------------------------ | |
import json | |
from PIL import Image | |
import random | |
import string | |
from tqdm import tqdm | |
import string | |
alphabet = string.digits + string.ascii_lowercase + string.ascii_uppercase + string.punctuation + ' ' # len(aphabet) = 95 | |
'''alphabet | |
0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ | |
''' | |
import argparse | |
import logging | |
import math | |
import os | |
import random | |
from pathlib import Path | |
from PIL import Image | |
import accelerate | |
import datasets | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
import transformers | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from accelerate.state import AcceleratorState | |
from accelerate.utils import ProjectConfiguration, set_seed | |
from huggingface_hub import create_repo, upload_folder | |
from packaging import version | |
from torchvision import transforms | |
from tqdm.auto import tqdm | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from transformers.utils import ContextManagers | |
import diffusers | |
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel | |
from diffusers.optimization import get_scheduler | |
from diffusers.training_utils import EMAModel | |
from diffusers.utils import check_min_version, deprecate | |
from diffusers.utils.import_utils import is_xformers_available | |
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
check_min_version("0.17.0.dev0") | |
logger = get_logger(__name__, log_level="INFO") | |
DATASET_NAME_MAPPING = { | |
"MARIO-10M": ("image", "text"), | |
} | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
parser.add_argument( | |
"--input_pertubation", type=float, default=0, help="The scale of input pretubation. Recommended 0.1." | |
) | |
parser.add_argument( | |
"--pretrained_model_name_or_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--vis_num", | |
type=int, | |
default=16, | |
help="The number of images to be visualized during training." | |
) | |
parser.add_argument( | |
"--revision", | |
type=str, | |
default=None, | |
required=False, | |
help="Revision of pretrained model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--dataset_name", | |
type=str, | |
default=None, | |
help=( | |
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," | |
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," | |
" or to a folder containing files that 🤗 Datasets can understand." | |
), | |
) | |
parser.add_argument( | |
"--train_data_dir", | |
type=str, | |
default=None, | |
help=( | |
"A folder containing the training data. Folder contents must follow the structure described in" | |
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" | |
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified." | |
), | |
) | |
parser.add_argument( | |
"--image_column", type=str, default="image", help="The column of the dataset containing an image." | |
) | |
parser.add_argument( | |
"--caption_column", | |
type=str, | |
default="text", | |
help="The column of the dataset containing a caption or a list of captions.", | |
) | |
parser.add_argument( | |
"--max_train_samples", | |
type=int, | |
default=None, | |
help=( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
), | |
) | |
parser.add_argument( | |
"--validation_prompts", | |
type=str, | |
default=None, | |
nargs="+", | |
help=("A set of prompts evaluated every `--validation_epochs` and logged to `--report_to`."), | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="sd-model-finetuned", | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
parser.add_argument( | |
"--cache_dir", | |
type=str, | |
default=None, | |
help="The directory where the downloaded models and datasets will be stored.", | |
) | |
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
parser.add_argument( | |
"--resolution", | |
type=int, | |
default=512, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument( | |
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." | |
) | |
parser.add_argument("--num_train_epochs", type=int, default=100) | |
parser.add_argument( | |
"--max_train_steps", | |
type=int, | |
default=None, | |
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument( | |
"--gradient_checkpointing", | |
action="store_true", | |
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=1e-5, | |
help="Initial learning rate (after the potential warmup period) to use.", | |
) | |
parser.add_argument( | |
"--lr_scheduler", | |
type=str, | |
default="constant", | |
help=( | |
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
' "constant", "constant_with_warmup"]' | |
), | |
) | |
parser.add_argument( | |
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
) | |
parser.add_argument( | |
"--snr_gamma", | |
type=float, | |
default=None, | |
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " | |
"More details here: https://arxiv.org/abs/2303.09556.", | |
) | |
parser.add_argument( | |
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
) | |
parser.add_argument( | |
"--allow_tf32", | |
action="store_true", | |
help=( | |
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
), | |
) | |
parser.add_argument( | |
"--index_file_path", | |
type=str, | |
default='/home/jingyechen/jingyechen/amlt_test/diffusers_combine/examples/text_to_image/train_dataset_index.txt', | |
help="The txt file that provides the index of training samples. The format of each line should be XXXXX_XXXXXXXXX." | |
) | |
parser.add_argument( | |
"--dataset_path", | |
type=str, | |
default='/path/to/laion-ocr-select', | |
required=True, | |
help="the root of the dataset, please follow the code in textdiffuser-1" | |
) | |
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") | |
parser.add_argument( | |
"--non_ema_revision", | |
type=str, | |
default=None, | |
required=False, | |
help=( | |
"Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or" | |
" remote repository specified with --pretrained_model_name_or_path." | |
), | |
) | |
parser.add_argument( | |
"--dataloader_num_workers", | |
type=int, | |
default=0, | |
help=( | |
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
), | |
) | |
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
parser.add_argument( | |
"--hub_model_id", | |
type=str, | |
default=None, | |
help="The name of the repository to keep in sync with the local `output_dir`.", | |
) | |
parser.add_argument( | |
"--logging_dir", | |
type=str, | |
default="logs", | |
help=( | |
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
), | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default=None, | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
), | |
) | |
parser.add_argument( | |
"--report_to", | |
type=str, | |
default="tensorboard", | |
help=( | |
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
), | |
) | |
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
parser.add_argument( | |
"--checkpointing_steps", | |
type=int, | |
default=500, | |
help=( | |
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" | |
" training using `--resume_from_checkpoint`." | |
), | |
) | |
parser.add_argument( | |
"--checkpoints_total_limit", | |
type=int, | |
default=10, | |
help=( | |
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." | |
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" | |
" for more docs" | |
), | |
) | |
parser.add_argument( | |
"--resume_from_checkpoint", | |
type=str, | |
default=None, | |
help=( | |
"Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
), | |
) | |
parser.add_argument( | |
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
) | |
parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.") | |
parser.add_argument( | |
"--validation_epochs", | |
type=int, | |
default=5, | |
help="Run validation every X epochs.", | |
) | |
parser.add_argument( | |
"--tracker_project_name", | |
type=str, | |
default="text2image-fine-tune", | |
help=( | |
"The `project_name` argument passed to Accelerator.init_trackers for" | |
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" | |
), | |
) | |
parser.add_argument( | |
"--max_length", | |
default=77, | |
type=int, | |
help="Maximum length of the prompt. Can enlarge this value to adapt longer coord representation." | |
) | |
parser.add_argument( | |
"--granularity", | |
type=int, | |
default=128, | |
help="The granularity of coordinates, ranging from 1~512." | |
) | |
parser.add_argument( | |
"--coord_mode", | |
type=str, | |
default='lt', | |
choices=['lt', 'center', 'ltrb'], | |
help="The way to represent coordinates. Can use one point or two points" | |
) | |
parser.add_argument( | |
"--vis_interval", | |
type=int, | |
default=1000, | |
help="The interval for visualization." | |
) | |
args = parser.parse_args() | |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
if env_local_rank != -1 and env_local_rank != args.local_rank: | |
args.local_rank = env_local_rank | |
# default to using the same revision for the non-ema model if not specified | |
if args.non_ema_revision is None: | |
args.non_ema_revision = args.revision | |
return args | |
#### check whether two boxes can be merged in the x-axis | |
def check_merge(box1, box2): | |
x_center1, y_center1, x_min1, y_min1, x_max1, y_max1, pred1 = box1 | |
x_center2, y_center2, x_min2, y_min2, x_max2, y_max2, pred2 = box2 | |
if y_center1 >= y_min2 and y_center1 <= y_max2: | |
if y_center2 >= y_min1 and y_center2 <= y_max1: | |
pass | |
else: | |
return False | |
else: | |
return False | |
distance1 = x_max2 - x_min1 | |
distance2 = (x_max2 - x_min2) + (x_max1 - x_min1) | |
if distance2 / distance1 >= 0.8: | |
if x_min1 < x_min2: | |
pred = pred1 + ' ' + pred2 | |
else: | |
pred = pred2 + ' ' + pred1 | |
x_min = min(x_min1, x_min2) | |
y_min = min(y_min1, y_min2) | |
x_max = max(x_max1, x_max2) | |
y_max = max(y_max1, y_max2) | |
x_center = (x_min + x_max) // 2 | |
y_center = (y_min + y_max) // 2 | |
return [x_center, y_center, x_min, y_min, x_max, y_max, pred] | |
else: | |
return False | |
#### merge boxes for training at line-level instead of word-level | |
def merge_boxes(boxes): | |
results = [] | |
while True: | |
if len(boxes) == 0: | |
break | |
flag = False | |
sample = boxes[0] | |
boxes.remove(sample) | |
for item in boxes: | |
result = check_merge(sample, item) | |
if result: | |
boxes.remove(item) | |
boxes.append(result) | |
boxes = sorted(boxes, key=lambda x: x[0]) | |
flag = True | |
break | |
else: | |
pass | |
if flag is False: | |
results.append(sample) | |
return results | |
def main(): | |
args = parse_args() | |
if args.non_ema_revision is not None: | |
deprecate( | |
"non_ema_revision!=None", | |
"0.15.0", | |
message=( | |
"Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to" | |
" use `--variant=non_ema` instead." | |
), | |
) | |
accelerator_project_config = ProjectConfiguration(total_limit=args.checkpoints_total_limit) | |
accelerator = Accelerator( | |
gradient_accumulation_steps=args.gradient_accumulation_steps, | |
mixed_precision=args.mixed_precision, | |
log_with=args.report_to, | |
# logging_dir=logging_dir, | |
project_config=accelerator_project_config, | |
) | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
logger.info(accelerator.state, main_process_only=False) | |
if accelerator.is_local_main_process: | |
datasets.utils.logging.set_verbosity_warning() | |
transformers.utils.logging.set_verbosity_warning() | |
diffusers.utils.logging.set_verbosity_info() | |
else: | |
datasets.utils.logging.set_verbosity_error() | |
transformers.utils.logging.set_verbosity_error() | |
diffusers.utils.logging.set_verbosity_error() | |
# If passed along, set the training seed now. | |
if args.seed is not None: | |
set_seed(args.seed) | |
# Handle the repository creation | |
if accelerator.is_main_process: | |
if args.output_dir is not None: | |
os.makedirs(args.output_dir, exist_ok=True) | |
if args.push_to_hub: | |
repo_id = create_repo( | |
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token | |
).repo_id | |
# Load scheduler, tokenizer and models. | |
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
tokenizer = CLIPTokenizer.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision | |
) | |
#### additional tokens are introduced, including coordinate tokens and character tokens | |
print('[Size of the original tokenizer] ', len(tokenizer)) | |
for i in range(520): | |
tokenizer.add_tokens(['l' + str(i) ]) # left | |
tokenizer.add_tokens(['t' + str(i) ]) # top | |
tokenizer.add_tokens(['r' + str(i) ]) # width | |
tokenizer.add_tokens(['b' + str(i) ]) # height | |
for c in alphabet: | |
tokenizer.add_tokens([f'[{c}]']) # character-level embedding | |
print('[Size of the modified tokenizer] ', len(tokenizer)) | |
if args.max_length == 77: | |
text_encoder = CLIPTextModel.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision | |
) | |
else: | |
#### enlarge the context length of text encoder. empirically, enlarging the context length can proceed longer sequence. However, we observe that it will be hard to render general objects | |
text_encoder = CLIPTextModel.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, max_position_embeddings=args.max_length, ignore_mismatched_sizes=True | |
) | |
text_encoder.resize_token_embeddings(len(tokenizer)) | |
vae = AutoencoderKL.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision | |
) | |
unet = UNet2DConditionModel.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="unet", revision=args.non_ema_revision | |
) | |
# Freeze vae and text_encoder | |
#### this script is provided for full-parameter fine-tuning, so the unet is trainable | |
vae.requires_grad_(False) | |
text_encoder.requires_grad_(True) #### the text_encoder should be trainable to learn the newly-added tokens | |
# Create EMA for the unet. | |
if args.use_ema: | |
ema_unet = UNet2DConditionModel.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision | |
) | |
ema_unet = EMAModel(ema_unet.parameters(), model_cls=UNet2DConditionModel, model_config=ema_unet.config) | |
if args.enable_xformers_memory_efficient_attention: | |
if is_xformers_available(): | |
import xformers | |
xformers_version = version.parse(xformers.__version__) | |
if xformers_version == version.parse("0.0.16"): | |
logger.warn( | |
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
) | |
unet.enable_xformers_memory_efficient_attention() | |
else: | |
raise ValueError("xformers is not available. Make sure it is installed correctly") | |
def compute_snr(timesteps): | |
""" | |
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849 | |
""" | |
alphas_cumprod = noise_scheduler.alphas_cumprod | |
sqrt_alphas_cumprod = alphas_cumprod**0.5 | |
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5 | |
# Expand the tensors. | |
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026 | |
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float() | |
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape): | |
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None] | |
alpha = sqrt_alphas_cumprod.expand(timesteps.shape) | |
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float() | |
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape): | |
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None] | |
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape) | |
# Compute SNR. | |
snr = (alpha / sigma) ** 2 | |
return snr | |
# `accelerate` 0.16.0 will have better support for customized saving | |
if version.parse(accelerate.__version__) >= version.parse("0.16.0"): | |
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
def save_model_hook(models, weights, output_dir): | |
if args.use_ema: | |
ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema")) | |
for i, model in enumerate(models): | |
# model.save_pretrained(os.path.join(output_dir, "unet")) | |
if i == 0: | |
model.save_pretrained(os.path.join(output_dir, f"unet")) | |
elif i == 1: | |
model.save_pretrained(os.path.join(output_dir, f"text_encoder")) | |
# make sure to pop weight so that corresponding model is not saved again | |
weights.pop() | |
def load_model_hook(models, input_dir): | |
if args.use_ema: | |
load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DConditionModel) | |
ema_unet.load_state_dict(load_model.state_dict()) | |
ema_unet.to(accelerator.device) | |
del load_model | |
for i in range(len(models)): | |
# pop models so that they are not loaded again | |
model = models.pop() | |
if i == 1: | |
load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") | |
model.register_to_config(**load_model.config) | |
elif i == 0: | |
load_model = CLIPTextModel.from_pretrained(input_dir, subfolder="text_encoder") | |
# model.register_to_config(**load_model.config) | |
# # load diffusers style into model | |
# load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") | |
# model.register_to_config(**load_model.config) | |
model.load_state_dict(load_model.state_dict()) | |
del load_model | |
accelerator.register_save_state_pre_hook(save_model_hook) | |
accelerator.register_load_state_pre_hook(load_model_hook) | |
if args.gradient_checkpointing: | |
unet.enable_gradient_checkpointing() | |
# Enable TF32 for faster training on Ampere GPUs, | |
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
if args.allow_tf32: | |
torch.backends.cuda.matmul.allow_tf32 = True | |
# Initialize the optimizer | |
if args.use_8bit_adam: | |
try: | |
import bitsandbytes as bnb | |
except ImportError: | |
raise ImportError( | |
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" | |
) | |
optimizer_cls = bnb.optim.AdamW8bit | |
else: | |
optimizer_cls = torch.optim.AdamW | |
#### train the u-net and text encoder | |
#### the lr for training u-net is set to a lower value (1e-5) following textdiffuser-1 | |
optimizer = optimizer_cls( | |
[ | |
{'params': text_encoder.parameters(), 'lr': 1e-5}, | |
{'params': unet.parameters(), 'lr': 1e-5}, | |
], | |
lr=args.learning_rate, | |
betas=(args.adam_beta1, args.adam_beta2), | |
weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon | |
) | |
#### args.train_dataset_index_file contains multiple lines, each of which should follow the format 00123_0012304567 ... | |
from datasets import Dataset | |
lines = open(args.index_file_path).readlines() | |
random.shuffle(lines) | |
train_dataset = Dataset.from_dict({"image": lines, "text": lines}) | |
dataset = { | |
'train': train_dataset, | |
} | |
# Preprocessing the datasets. | |
# We need to tokenize inputs and targets. | |
column_names = dataset["train"].column_names | |
# 6. Get the column names for input/target. | |
dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None) | |
if args.image_column is None: | |
image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] | |
else: | |
image_column = args.image_column | |
if image_column not in column_names: | |
raise ValueError( | |
f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}" | |
) | |
if args.caption_column is None: | |
caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1] | |
else: | |
caption_column = args.caption_column | |
if caption_column not in column_names: | |
raise ValueError( | |
f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}" | |
) | |
#### many augmentations can not be used in the text rendering task | |
train_transforms = transforms.Compose( | |
[ | |
# transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), | |
# transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), | |
# transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), | |
transforms.ToTensor(), | |
] | |
) | |
#### process the training data | |
def preprocess_train(examples): | |
images = [] | |
prompts_train = [] | |
prompts_cond = [] | |
prompts_nocond = [] | |
for image in examples[image_column]: | |
image = image.strip() | |
first, second = image.split('_') | |
#### get image | |
image_path = f'{args.dataset_path}/{first}/{second}/image.jpg' | |
image = Image.open(image_path).convert("RGB") | |
images.append(image) | |
#### get caption | |
try: #### note that few cases do not contain valid captions | |
caption = open(f'{args.dataset_path}/{first}/{second}/caption.txt').readlines()[0] | |
except: | |
caption = 'null' | |
print('erorr of caption') | |
#### get ocr | |
#### since the original ocr annotations are word-level, we need to merge some boxes to construct line-level ocr | |
ocrs = open(f'{args.dataset_path}/{first}/{second}/ocr.txt').readlines() | |
ocrs_temp = [] | |
for line in ocrs: | |
line = line.strip() | |
pred, box, prob = line.split() | |
items = box.split(',') | |
x1, y1, x2, y2, x3, y3, x4, y4 = int(items[0]), int(items[1]), int(items[2]), int(items[3]), int(items[4]), int(items[5]), int(items[6]), int(items[7]) | |
x_min = min(x1, x2, x3, x4) | |
y_min = min(y1, y2, y3, y4) | |
x_max = max(x1, x2, x3, x4) | |
y_max = max(y1, y2, y3, y4) | |
x_center = (x_min + x_max) // 2 | |
y_center = (y_min + y_max) // 2 | |
ocrs_temp.append([x_center, y_center, x_min, y_min, x_max, y_max, pred]) | |
ocrs_temp = sorted(ocrs_temp, key=lambda x: x[0]) | |
ocrs_temp = merge_boxes(ocrs_temp) | |
ocrs_temp = sorted(ocrs_temp, key=lambda x: x[1]) | |
random.shuffle(ocrs_temp) #### augment the ocr sequence for robust training | |
ocr_ids = [] #### concat with the prompt tokens | |
for line in ocrs_temp: | |
x_center, y_center, x_min, y_min, x_max, y_max, pred = line | |
# choose coord mode | |
if args.coord_mode == 'lt': | |
x_left = x_min | |
y_top = y_min | |
x_left = x_left // (512 // args.granularity) | |
y_top = y_top // (512 // args.granularity) | |
x_left = np.clip(x_left, 0, args.granularity) | |
y_top = np.clip(y_top, 0, args.granularity) | |
ocr_ids.extend(['l'+str(x_left), 't'+str(y_top)]) | |
elif args.coord_mode == 'center': | |
x_center = x_center // (512 // args.granularity) | |
y_center = y_center // (512 // args.granularity) | |
x_center = np.clip(x_center, 0, args.granularity) | |
y_center = np.clip(y_center, 0, args.granularity) | |
ocr_ids.extend(['l'+str(x_center), 't'+str(y_center)]) | |
elif args.coord_mode == 'ltrb': | |
x_left = x_min | |
y_top = y_min | |
x_right = x_max | |
y_bottom = y_max | |
x_left = x_left // (512 // args.granularity) | |
y_top = y_top // (512 // args.granularity) | |
x_right = x_right // (512 // args.granularity) | |
y_bottom = y_bottom // (512 // args.granularity) | |
x_left = np.clip(x_left, 0, args.granularity) | |
y_top = np.clip(y_top, 0, args.granularity) | |
x_right = np.clip(x_right, 0, args.granularity) | |
y_bottom = np.clip(y_bottom, 0, args.granularity) | |
ocr_ids.extend(['l'+str(x_left), 't'+str(y_top), 'r'+str(x_right), 'b'+str(y_bottom)]) | |
char_list = list(pred) | |
char_list = [f'[{i}]' for i in char_list] | |
ocr_ids.extend(char_list) | |
ocr_ids.append(tokenizer.eos_token_id) | |
ocr_ids.append(tokenizer.eos_token_id) | |
ocr_ids = tokenizer.encode(ocr_ids) | |
caption_ids = tokenizer( | |
caption, truncation=True, return_tensors="pt" | |
).input_ids[0].tolist() | |
prompt = caption_ids + ocr_ids | |
prompt = prompt[:args.max_length] | |
while len(prompt) < args.max_length: | |
prompt.append(tokenizer.pad_token_id) | |
prompts_cond.append(prompt) | |
prompts_nocond.append([tokenizer.pad_token_id]*args.max_length) | |
#### classifier-free guidance | |
if random.random() < 0.1: | |
prompts_train.append([tokenizer.pad_token_id]*args.max_length) | |
else: | |
prompts_train.append(prompt) | |
examples["images"] = [train_transforms(image).sub_(0.5).div_(0.5) for image in images] | |
examples["prompts_train"] = prompts_train | |
examples["prompts_cond"] = prompts_cond | |
examples["prompts_nocond"] = prompts_nocond | |
return examples | |
with accelerator.main_process_first(): | |
if args.max_train_samples is not None: | |
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) | |
# Set the training transforms | |
train_dataset = dataset["train"].with_transform(preprocess_train) | |
def collate_fn(examples): | |
images = torch.stack([example["images"] for example in examples]) | |
images = images.to(memory_format=torch.contiguous_format).float() | |
prompts_train = torch.Tensor([example["prompts_train"] for example in examples]).long() | |
prompts_cond = torch.Tensor([example["prompts_cond"] for example in examples]).long() | |
prompts_nocond = torch.Tensor([example["prompts_nocond"] for example in examples]).long() | |
return {"images": images, "prompts_train": prompts_train, "prompts_cond": prompts_cond, "prompts_nocond": prompts_nocond} | |
# DataLoaders creation: | |
train_dataloader = torch.utils.data.DataLoader( | |
train_dataset, | |
shuffle=True, | |
collate_fn=collate_fn, | |
batch_size=args.train_batch_size, | |
num_workers=args.dataloader_num_workers, | |
) | |
# Scheduler and math around the number of training steps. | |
overrode_max_train_steps = False | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if args.max_train_steps is None: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
overrode_max_train_steps = True | |
lr_scheduler = get_scheduler( | |
args.lr_scheduler, | |
optimizer=optimizer, | |
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | |
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | |
) | |
# Prepare everything with our `accelerator`. | |
#### please note that "text_encoder" should be added for training | |
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
unet, text_encoder, optimizer, train_dataloader, lr_scheduler | |
) | |
if args.use_ema: | |
ema_unet.to(accelerator.device) | |
# For mixed precision training we cast the text_encoder and vae weights to half-precision | |
# as these models are only used for inference, keeping weights in full precision is not required. | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
# Move text_encode and vae to gpu and cast to weight_dtype | |
# text_encoder.to(accelerator.device, dtype=weight_dtype) | |
vae.to(accelerator.device, dtype=weight_dtype) | |
# We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if overrode_max_train_steps: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
# Afterwards we recalculate our number of training epochs | |
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
# We need to initialize the trackers we use, and also store our configuration. | |
# The trackers initializes automatically on the main process. | |
if accelerator.is_main_process: | |
tracker_config = dict(vars(args)) | |
tracker_config.pop("validation_prompts") | |
accelerator.init_trackers(args.tracker_project_name, tracker_config) | |
# Train! | |
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num Epochs = {args.num_train_epochs}") | |
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
logger.info(f" Total optimization steps = {args.max_train_steps}") | |
global_step = 0 | |
first_epoch = 0 | |
# Potentially load in the weights and states from a previous save | |
if args.resume_from_checkpoint: | |
if args.resume_from_checkpoint != "latest": | |
path = os.path.basename(args.resume_from_checkpoint) | |
else: | |
# Get the most recent checkpoint | |
dirs = os.listdir(args.output_dir) | |
dirs = [d for d in dirs if d.startswith("checkpoint")] | |
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
path = dirs[-1] if len(dirs) > 0 else None | |
if path is None: | |
accelerator.print( | |
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
) | |
args.resume_from_checkpoint = None | |
else: | |
accelerator.print(f"Resuming from checkpoint {path}") | |
try: | |
accelerator.load_state(args.resume_from_checkpoint) | |
except: | |
accelerator.load_state(os.path.join(args.output_dir, path)) | |
global_step = int(path.split("-")[1]) | |
resume_global_step = global_step * args.gradient_accumulation_steps | |
first_epoch = global_step // num_update_steps_per_epoch | |
resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) | |
# Only show the progress bar once on each machine. | |
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) | |
progress_bar.set_description("Steps") | |
for epoch in range(first_epoch, args.num_train_epochs): | |
unet.train() | |
text_encoder.train() | |
train_loss = 0.0 | |
for step, batch in enumerate(train_dataloader): | |
# Skip steps until we reach the resumed step | |
# if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: | |
# if step % args.gradient_accumulation_steps == 0: | |
# progress_bar.update(1) | |
# continue | |
with accelerator.accumulate(unet): | |
# Convert images to latent space | |
latents = vae.encode(batch["images"].to(weight_dtype)).latent_dist.sample() | |
latents = latents * vae.config.scaling_factor | |
# Sample noise that we'll add to the latents | |
noise = torch.randn_like(latents) | |
if args.noise_offset: | |
# https://www.crosslabs.org//blog/diffusion-with-offset-noise | |
noise += args.noise_offset * torch.randn( | |
(latents.shape[0], latents.shape[1], 1, 1), device=latents.device | |
) | |
if args.input_pertubation: | |
new_noise = noise + args.input_pertubation * torch.randn_like(noise) | |
bsz = latents.shape[0] | |
# Sample a random timestep for each image | |
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) | |
timesteps = timesteps.long() | |
# Add noise to the latents according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
if args.input_pertubation: | |
noisy_latents = noise_scheduler.add_noise(latents, new_noise, timesteps) | |
else: | |
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
# Get the text embedding for conditioning | |
encoder_hidden_states = text_encoder(batch["prompts_train"])[0] | |
# Get the target for loss depending on the prediction type | |
if noise_scheduler.config.prediction_type == "epsilon": | |
target = noise | |
elif noise_scheduler.config.prediction_type == "v_prediction": | |
target = noise_scheduler.get_velocity(latents, noise, timesteps) | |
else: | |
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
# Predict the noise residual and compute loss | |
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | |
if args.snr_gamma is None: | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | |
else: | |
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. | |
# Since we predict the noise instead of x_0, the original formulation is slightly changed. | |
# This is discussed in Section 4.2 of the same paper. | |
snr = compute_snr(timesteps) | |
mse_loss_weights = ( | |
torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr | |
) | |
# We first calculate the original loss. Then we mean over the non-batch dimensions and | |
# rebalance the sample-wise losses with their respective loss weights. | |
# Finally, we take the mean of the rebalanced loss. | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") | |
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights | |
loss = loss.mean() | |
# Gather the losses across all processes for logging (if we use distributed training). | |
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() | |
train_loss += avg_loss.item() / args.gradient_accumulation_steps | |
# Backpropagate | |
accelerator.backward(loss) | |
if accelerator.sync_gradients: | |
accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm) | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad() | |
#### visualization during training | |
if True: | |
# if accelerator.is_main_process: | |
cfg = 7 | |
if (step + 0) % args.vis_interval == 0: | |
scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
scheduler.set_timesteps(50) | |
noise = torch.randn((args.vis_num, 4, 64, 64)).to("cuda") | |
input = noise | |
encoder_hidden_states_cond = text_encoder(batch["prompts_cond"])[0] | |
encoder_hidden_states_nocond = text_encoder(batch["prompts_nocond"])[0] | |
texts = batch["prompts_cond"] | |
f = open(f'{args.output_dir}/[{epoch}]_{(step + 1) // args.vis_interval}_prompt_{args.local_rank}.txt', 'w+') | |
for text in texts: | |
# also need to call a function to map back | |
sentence = tokenizer.decode(text) | |
f.write(sentence + '\n') | |
f.close() | |
for t in tqdm(scheduler.timesteps): | |
with torch.no_grad(): # classifier free guidance | |
noise_pred_cond = unet(sample=input.half(), timestep=t, encoder_hidden_states=encoder_hidden_states_cond[:args.vis_num]).sample # b, 4, 64, 64 | |
noise_pred_uncond = unet(sample=input.half(), timestep=t, encoder_hidden_states=encoder_hidden_states_nocond[:args.vis_num]).sample # b, 4, 64, 64 | |
noisy_residual = noise_pred_uncond + cfg * (noise_pred_cond - noise_pred_uncond) # b, 4, 64, 64 | |
prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample | |
input = prev_noisy_sample | |
# decode | |
input = 1 / vae.config.scaling_factor * input | |
images = vae.decode(input.half(), return_dict=False)[0] | |
## save predicted images | |
width, height = 512, 512 | |
new_image = Image.new('RGB', (4*width, 4*height)) | |
for index, image in enumerate(images.float()): | |
image = (image / 2 + 0.5).clamp(0, 1).unsqueeze(0) | |
image = image.cpu().permute(0, 2, 3, 1).numpy()[0] | |
image = Image.fromarray((image * 255).round().astype("uint8")).convert('RGB') | |
row = index // 4 | |
col = index % 4 | |
new_image.paste(image, (col*width, row*height)) | |
new_image.save(f'{args.output_dir}/[{epoch}]_{(step + 1) // args.vis_interval}_pred_img_cfg{cfg}_{args.local_rank}.jpg') | |
## save original images | |
width, height = 512, 512 | |
new_image = Image.new('RGB', (4*width, 4*height)) | |
for index, image in enumerate(batch["images"][:args.vis_num]): | |
image = (image / 2 + 0.5).clamp(0, 1).unsqueeze(0) | |
image = image.cpu().permute(0, 2, 3, 1).numpy()[0] | |
image = Image.fromarray((image * 255).round().astype("uint8")).convert('RGB') | |
# pred_images.append(image) | |
row = index // 4 | |
col = index % 4 | |
new_image.paste(image, (col*width, row*height)) | |
new_image.save(f'{args.output_dir}/[{epoch}]_{(step + 1) // args.vis_interval}_orig_img_{args.local_rank}.jpg') | |
scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
scheduler.set_timesteps(50) | |
noise = torch.randn((args.vis_num, 4, 64, 64)).to("cuda") | |
input = noise | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
if args.use_ema: | |
ema_unet.step(unet.parameters()) | |
progress_bar.update(1) | |
global_step += 1 | |
accelerator.log({"train_loss": train_loss}, step=global_step) | |
train_loss = 0.0 | |
if global_step % args.checkpointing_steps == 0: | |
if accelerator.is_main_process: | |
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
accelerator.save_state(save_path) | |
logger.info(f"Saved state to {save_path}") | |
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
progress_bar.set_postfix(**logs) | |
if global_step >= args.max_train_steps: | |
break | |
# Create the pipeline using the trained modules and save it. | |
accelerator.wait_for_everyone() | |
if accelerator.is_main_process: | |
unet = accelerator.unwrap_model(unet) | |
if args.use_ema: | |
ema_unet.copy_to(unet.parameters()) | |
pipeline = StableDiffusionPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
text_encoder=text_encoder, | |
vae=vae, | |
unet=unet, | |
revision=args.revision, | |
) | |
pipeline.save_pretrained(args.output_dir) | |
if args.push_to_hub: | |
upload_folder( | |
repo_id=repo_id, | |
folder_path=args.output_dir, | |
commit_message="End of training", | |
ignore_patterns=["step_*", "epoch_*"], | |
) | |
accelerator.end_training() | |
if __name__ == "__main__": | |
main() | |