File size: 48,530 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
# ------------------------------------------
# TextDiffuser-2: Unleashing the Power of Language Models for Text Rendering
# Paper Link: https://arxiv.org/abs/2311.16465
# Code Link: https://github.com/microsoft/unilm/tree/master/textdiffuser-2
# Copyright (c) Microsoft Corporation.
# ------------------------------------------

import json
from PIL import Image
import random
import string
from tqdm import tqdm

import string
alphabet = string.digits + string.ascii_lowercase + string.ascii_uppercase + string.punctuation + ' '  # len(aphabet) = 95
'''alphabet
0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ 
'''

import argparse
import logging
import math
import os
import random
from pathlib import Path
from PIL import Image

import accelerate
import datasets
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.state import AcceleratorState
from accelerate.utils import ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder
from packaging import version
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from transformers.utils import ContextManagers

import diffusers
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
from diffusers.utils import check_min_version, deprecate
from diffusers.utils.import_utils import is_xformers_available

# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.17.0.dev0")

logger = get_logger(__name__, log_level="INFO")

DATASET_NAME_MAPPING = {
    "MARIO-10M": ("image", "text"),
}

def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--input_pertubation", type=float, default=0, help="The scale of input pretubation. Recommended 0.1."
    )
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--vis_num", 
        type=int, 
        default=16, 
        help="The number of images to be visualized during training."
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that 🤗 Datasets can understand."
        ),
    )
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--image_column", type=str, default="image", help="The column of the dataset containing an image."
    )
    parser.add_argument(
        "--caption_column",
        type=str,
        default="text",
        help="The column of the dataset containing a caption or a list of captions.",
    )
    parser.add_argument(
        "--max_train_samples",
        type=int,
        default=None,
        help=(
            "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        ),
    )
    parser.add_argument(
        "--validation_prompts",
        type=str,
        default=None,
        nargs="+",
        help=("A set of prompts evaluated every `--validation_epochs` and logged to `--report_to`."),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="sd-model-finetuned",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument("--num_train_epochs", type=int, default=100)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-5,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--snr_gamma",
        type=float,
        default=None,
        help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
        "More details here: https://arxiv.org/abs/2303.09556.",
    )
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--index_file_path", 
        type=str, 
        default='/home/jingyechen/jingyechen/amlt_test/diffusers_combine/examples/text_to_image/train_dataset_index.txt', 
        help="The txt file that provides the index of training samples. The format of each line should be XXXXX_XXXXXXXXX."
    )
    parser.add_argument(
        "--dataset_path", 
        type=str, 
        default='/path/to/laion-ocr-select',
        required=True,
        help="the root of the dataset, please follow the code in textdiffuser-1"
    )
    parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
    parser.add_argument(
        "--non_ema_revision",
        type=str,
        default=None,
        required=False,
        help=(
            "Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or"
            " remote repository specified with --pretrained_model_name_or_path."
        ),
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--checkpoints_total_limit",
        type=int,
        default=10,
        help=(
            "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
            " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
            " for more docs"
        ),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
    parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.")
    parser.add_argument(
        "--validation_epochs",
        type=int,
        default=5,
        help="Run validation every X epochs.",
    )
    parser.add_argument(
        "--tracker_project_name",
        type=str,
        default="text2image-fine-tune",
        help=(
            "The `project_name` argument passed to Accelerator.init_trackers for"
            " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
        ),
    )
    parser.add_argument(
        "--max_length", 
        default=77,
        type=int, 
        help="Maximum length of the prompt. Can enlarge this value to adapt longer coord representation."
    )
    parser.add_argument(
        "--granularity", 
        type=int, 
        default=128, 
        help="The granularity of coordinates, ranging from 1~512."
    )
    parser.add_argument(
        "--coord_mode", 
        type=str, 
        default='lt',
        choices=['lt', 'center', 'ltrb'],
        help="The way to represent coordinates. Can use one point or two points"
    )
    parser.add_argument(
        "--vis_interval", 
        type=int, 
        default=1000, 
        help="The interval for visualization."
    )

    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    # default to using the same revision for the non-ema model if not specified
    if args.non_ema_revision is None:
        args.non_ema_revision = args.revision

    return args



#### check whether two boxes can be merged in the x-axis
def check_merge(box1, box2):

    x_center1, y_center1, x_min1, y_min1, x_max1, y_max1, pred1 = box1
    x_center2, y_center2, x_min2, y_min2, x_max2, y_max2, pred2 = box2

    if y_center1 >= y_min2 and y_center1 <= y_max2:
        if y_center2 >= y_min1 and y_center2 <= y_max1:
            pass
        else:
            return False
    else:
        return False

    distance1 = x_max2 - x_min1
    distance2 = (x_max2 - x_min2) + (x_max1 - x_min1)

    if distance2 / distance1 >= 0.8:
        if x_min1 < x_min2:
            pred = pred1 + ' ' + pred2
        else:
            pred = pred2 + ' ' + pred1

        x_min = min(x_min1, x_min2)
        y_min = min(y_min1, y_min2)
        x_max = max(x_max1, x_max2)
        y_max = max(y_max1, y_max2)

        x_center = (x_min + x_max) // 2
        y_center = (y_min + y_max) // 2

        return [x_center, y_center, x_min, y_min, x_max, y_max, pred]

    else:
        return False


#### merge boxes for training at line-level instead of word-level
def merge_boxes(boxes):
    results = []
    while True:
        if len(boxes) == 0:
            break 
        
        flag = False
        sample = boxes[0] 
        boxes.remove(sample) 
        for item in boxes:
            result = check_merge(sample, item)
            if result:
                boxes.remove(item)
                boxes.append(result) 
                boxes = sorted(boxes, key=lambda x: x[0]) 
                flag = True
                break
            else:
                pass

        if flag is False:
            results.append(sample)

    return results


def main():
    args = parse_args()

    if args.non_ema_revision is not None:
        deprecate(
            "non_ema_revision!=None",
            "0.15.0",
            message=(
                "Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to"
                " use `--variant=non_ema` instead."
            ),
        )

    accelerator_project_config = ProjectConfiguration(total_limit=args.checkpoints_total_limit)

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        # logging_dir=logging_dir,
        project_config=accelerator_project_config,
    )

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

    # Load scheduler, tokenizer and models.
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
    tokenizer = CLIPTokenizer.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
    )

    #### additional tokens are introduced, including coordinate tokens and character tokens
    print('[Size of the original tokenizer] ', len(tokenizer))
    for i in range(520):
        tokenizer.add_tokens(['l' + str(i) ]) # left
        tokenizer.add_tokens(['t' + str(i) ]) # top
        tokenizer.add_tokens(['r' + str(i) ]) # width
        tokenizer.add_tokens(['b' + str(i) ]) # height    
    for c in alphabet:
        tokenizer.add_tokens([f'[{c}]']) # character-level embedding

    print('[Size of the modified tokenizer] ', len(tokenizer))

    if args.max_length == 77:
        text_encoder = CLIPTextModel.from_pretrained(
            args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
        )
    else:
        #### enlarge the context length of text encoder. empirically, enlarging the context length can proceed longer sequence. However, we observe that it will be hard to render general objects
        text_encoder = CLIPTextModel.from_pretrained(
            args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, max_position_embeddings=args.max_length, ignore_mismatched_sizes=True
        )
    text_encoder.resize_token_embeddings(len(tokenizer))

    vae = AutoencoderKL.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision
    )
    unet = UNet2DConditionModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.non_ema_revision
    )

    # Freeze vae and text_encoder
    #### this script is provided for full-parameter fine-tuning, so the unet is trainable
    vae.requires_grad_(False)
    text_encoder.requires_grad_(True) #### the text_encoder should be trainable to learn the newly-added tokens

    # Create EMA for the unet.
    if args.use_ema:
        ema_unet = UNet2DConditionModel.from_pretrained(
            args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
        )
        ema_unet = EMAModel(ema_unet.parameters(), model_cls=UNet2DConditionModel, model_config=ema_unet.config)

    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    def compute_snr(timesteps):
        """
        Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
        """
        alphas_cumprod = noise_scheduler.alphas_cumprod
        sqrt_alphas_cumprod = alphas_cumprod**0.5
        sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5

        # Expand the tensors.
        # Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
        sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
        while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
            sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
        alpha = sqrt_alphas_cumprod.expand(timesteps.shape)

        sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
        while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
            sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
        sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)

        # Compute SNR.
        snr = (alpha / sigma) ** 2
        return snr

    # `accelerate` 0.16.0 will have better support for customized saving
    if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
        # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
        def save_model_hook(models, weights, output_dir):
            if args.use_ema:
                ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema"))

            for i, model in enumerate(models):
                # model.save_pretrained(os.path.join(output_dir, "unet"))

                if i == 0:
                    model.save_pretrained(os.path.join(output_dir, f"unet"))
                elif i == 1:
                    model.save_pretrained(os.path.join(output_dir, f"text_encoder"))

                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

        def load_model_hook(models, input_dir):
            if args.use_ema:
                load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DConditionModel)
                ema_unet.load_state_dict(load_model.state_dict())
                ema_unet.to(accelerator.device)
                del load_model

            for i in range(len(models)):
                # pop models so that they are not loaded again
                model = models.pop()

                if i == 1:
                    load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
                    model.register_to_config(**load_model.config)
                elif i == 0:
                    load_model = CLIPTextModel.from_pretrained(input_dir, subfolder="text_encoder")
                    # model.register_to_config(**load_model.config)

                # # load diffusers style into model
                # load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
                # model.register_to_config(**load_model.config)

                model.load_state_dict(load_model.state_dict())
                del load_model

        accelerator.register_save_state_pre_hook(save_model_hook)
        accelerator.register_load_state_pre_hook(load_model_hook)

    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

    # Initialize the optimizer
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
            )

        optimizer_cls = bnb.optim.AdamW8bit
    else:
        optimizer_cls = torch.optim.AdamW

    #### train the u-net and text encoder
    #### the lr for training u-net is set to a lower value (1e-5) following textdiffuser-1
    optimizer = optimizer_cls(
        [
            {'params': text_encoder.parameters(), 'lr': 1e-5},
            {'params': unet.parameters(), 'lr': 1e-5},
        ], 
        lr=args.learning_rate, 
        betas=(args.adam_beta1, args.adam_beta2), 
        weight_decay=args.adam_weight_decay, 
        eps=args.adam_epsilon
    )

    #### args.train_dataset_index_file contains multiple lines, each of which should follow the format 00123_0012304567 ...
    from datasets import Dataset
    lines = open(args.index_file_path).readlines()
    random.shuffle(lines)
    train_dataset = Dataset.from_dict({"image": lines, "text": lines}) 
    dataset = {
        'train': train_dataset,
    }

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    column_names = dataset["train"].column_names

    # 6. Get the column names for input/target.
    dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None)
    if args.image_column is None:
        image_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
    else:
        image_column = args.image_column
        if image_column not in column_names:
            raise ValueError(
                f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}"
            )
    if args.caption_column is None:
        caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
    else:
        caption_column = args.caption_column
        if caption_column not in column_names:
            raise ValueError(
                f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}"
            )

    #### many augmentations can not be used in the text rendering task 
    train_transforms = transforms.Compose(
        [
            # transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
            # transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
            # transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
            transforms.ToTensor(),
        ]
    )

    #### process the training data
    def preprocess_train(examples):            
        images = []
        prompts_train = []
        prompts_cond = []
        prompts_nocond = []
        for image in examples[image_column]:
            image = image.strip()
            first, second = image.split('_')
            
            #### get image
            image_path = f'{args.dataset_path}/{first}/{second}/image.jpg'
            image = Image.open(image_path).convert("RGB")
            images.append(image)
           
            #### get caption
            try: #### note that few cases do not contain valid captions
                caption = open(f'{args.dataset_path}/{first}/{second}/caption.txt').readlines()[0]
            except:
                caption = 'null'
                print('erorr of caption')
            
            #### get ocr
            #### since the original ocr annotations are word-level, we need to merge some boxes to construct line-level ocr
            ocrs = open(f'{args.dataset_path}/{first}/{second}/ocr.txt').readlines()

            ocrs_temp = []
            for line in ocrs:
                line = line.strip()
                pred, box, prob = line.split()
                items = box.split(',')
                x1, y1, x2, y2, x3, y3, x4, y4 = int(items[0]), int(items[1]), int(items[2]), int(items[3]), int(items[4]), int(items[5]), int(items[6]), int(items[7])
                x_min = min(x1, x2, x3, x4)
                y_min = min(y1, y2, y3, y4)
                x_max = max(x1, x2, x3, x4)
                y_max = max(y1, y2, y3, y4)
                x_center = (x_min + x_max) // 2
                y_center = (y_min + y_max) // 2
                ocrs_temp.append([x_center, y_center, x_min, y_min, x_max, y_max, pred])
            ocrs_temp = sorted(ocrs_temp, key=lambda x: x[0])
            ocrs_temp = merge_boxes(ocrs_temp)
            ocrs_temp = sorted(ocrs_temp, key=lambda x: x[1])

            random.shuffle(ocrs_temp) #### augment the ocr sequence for robust training

            ocr_ids = [] #### concat with the prompt tokens
            for line in ocrs_temp:

                x_center, y_center, x_min, y_min, x_max, y_max, pred = line
                
                # choose coord mode
                if args.coord_mode == 'lt':
                    x_left = x_min
                    y_top = y_min
                    x_left = x_left // (512 // args.granularity)
                    y_top = y_top // (512 // args.granularity)
                    x_left = np.clip(x_left, 0, args.granularity)
                    y_top = np.clip(y_top, 0, args.granularity)
                    ocr_ids.extend(['l'+str(x_left), 't'+str(y_top)])

                elif args.coord_mode == 'center':
                    x_center = x_center // (512 // args.granularity)
                    y_center = y_center // (512 // args.granularity)
                    x_center = np.clip(x_center, 0, args.granularity)
                    y_center = np.clip(y_center, 0, args.granularity)
                    ocr_ids.extend(['l'+str(x_center), 't'+str(y_center)])
                    
                elif args.coord_mode == 'ltrb':
                    x_left = x_min
                    y_top = y_min
                    x_right = x_max
                    y_bottom = y_max
                    x_left = x_left // (512 // args.granularity)
                    y_top = y_top // (512 // args.granularity)
                    x_right = x_right // (512 // args.granularity)
                    y_bottom = y_bottom // (512 // args.granularity)
                    x_left = np.clip(x_left, 0, args.granularity)
                    y_top = np.clip(y_top, 0, args.granularity)
                    x_right = np.clip(x_right, 0, args.granularity)
                    y_bottom = np.clip(y_bottom, 0, args.granularity)
                    ocr_ids.extend(['l'+str(x_left), 't'+str(y_top), 'r'+str(x_right), 'b'+str(y_bottom)])

                char_list = list(pred)
                char_list = [f'[{i}]' for i in char_list]
                ocr_ids.extend(char_list)
                ocr_ids.append(tokenizer.eos_token_id)
            ocr_ids.append(tokenizer.eos_token_id) 

            ocr_ids = tokenizer.encode(ocr_ids)

            caption_ids = tokenizer(
                caption, truncation=True, return_tensors="pt"
            ).input_ids[0].tolist() 

            prompt = caption_ids + ocr_ids
            prompt = prompt[:args.max_length]
            while len(prompt) < args.max_length: 
                prompt.append(tokenizer.pad_token_id) 

            prompts_cond.append(prompt)
            prompts_nocond.append([tokenizer.pad_token_id]*args.max_length)

            #### classifier-free guidance
            if random.random() < 0.1:
                prompts_train.append([tokenizer.pad_token_id]*args.max_length)
            else:
                prompts_train.append(prompt)

        examples["images"] = [train_transforms(image).sub_(0.5).div_(0.5) for image in images]  
        examples["prompts_train"] = prompts_train 
        examples["prompts_cond"] = prompts_cond
        examples["prompts_nocond"] = prompts_nocond

        return examples

    with accelerator.main_process_first():
        if args.max_train_samples is not None:
            dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
        # Set the training transforms
        train_dataset = dataset["train"].with_transform(preprocess_train)


    def collate_fn(examples): 
        images = torch.stack([example["images"] for example in examples])
        images = images.to(memory_format=torch.contiguous_format).float()

        prompts_train = torch.Tensor([example["prompts_train"] for example in examples]).long()
        prompts_cond = torch.Tensor([example["prompts_cond"] for example in examples]).long()
        prompts_nocond = torch.Tensor([example["prompts_nocond"] for example in examples]).long()
        return {"images": images, "prompts_train": prompts_train, "prompts_cond": prompts_cond, "prompts_nocond": prompts_nocond}

    # DataLoaders creation:
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        shuffle=True,
        collate_fn=collate_fn,
        batch_size=args.train_batch_size,
        num_workers=args.dataloader_num_workers,
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
    )

    # Prepare everything with our `accelerator`.
    #### please note that "text_encoder" should be added for training
    unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        unet, text_encoder, optimizer, train_dataloader, lr_scheduler
    )

    if args.use_ema:
        ema_unet.to(accelerator.device)

    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    # Move text_encode and vae to gpu and cast to weight_dtype
    # text_encoder.to(accelerator.device, dtype=weight_dtype)
    vae.to(accelerator.device, dtype=weight_dtype)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        tracker_config = dict(vars(args))
        tracker_config.pop("validation_prompts")
        accelerator.init_trackers(args.tracker_project_name, tracker_config)

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    global_step = 0
    first_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            try:
                accelerator.load_state(args.resume_from_checkpoint)
            except:
                accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            resume_global_step = global_step * args.gradient_accumulation_steps
            first_epoch = global_step // num_update_steps_per_epoch
            resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
    progress_bar.set_description("Steps")

    for epoch in range(first_epoch, args.num_train_epochs):
        unet.train()
        text_encoder.train()
        train_loss = 0.0
        for step, batch in enumerate(train_dataloader):
            # Skip steps until we reach the resumed step
            # if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
            #     if step % args.gradient_accumulation_steps == 0:
            #         progress_bar.update(1)
            #     continue

            with accelerator.accumulate(unet):
                # Convert images to latent space
                latents = vae.encode(batch["images"].to(weight_dtype)).latent_dist.sample()
                latents = latents * vae.config.scaling_factor

                # Sample noise that we'll add to the latents
                noise = torch.randn_like(latents)
                if args.noise_offset:
                    # https://www.crosslabs.org//blog/diffusion-with-offset-noise
                    noise += args.noise_offset * torch.randn(
                        (latents.shape[0], latents.shape[1], 1, 1), device=latents.device
                    )
                if args.input_pertubation:
                    new_noise = noise + args.input_pertubation * torch.randn_like(noise)
                bsz = latents.shape[0]
                # Sample a random timestep for each image
                timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
                timesteps = timesteps.long()

                # Add noise to the latents according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                if args.input_pertubation:
                    noisy_latents = noise_scheduler.add_noise(latents, new_noise, timesteps)
                else:
                    noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

                # Get the text embedding for conditioning
                encoder_hidden_states = text_encoder(batch["prompts_train"])[0]

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
                    target = noise_scheduler.get_velocity(latents, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")




                # Predict the noise residual and compute loss
                model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample

                if args.snr_gamma is None:
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
                else:
                    # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
                    # Since we predict the noise instead of x_0, the original formulation is slightly changed.
                    # This is discussed in Section 4.2 of the same paper.
                    snr = compute_snr(timesteps)
                    mse_loss_weights = (
                        torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
                    )
                    # We first calculate the original loss. Then we mean over the non-batch dimensions and
                    # rebalance the sample-wise losses with their respective loss weights.
                    # Finally, we take the mean of the rebalanced loss.
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
                    loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
                    loss = loss.mean()

                # Gather the losses across all processes for logging (if we use distributed training).
                avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
                train_loss += avg_loss.item() / args.gradient_accumulation_steps

                # Backpropagate
                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()


                #### visualization during training
                if True:
                # if accelerator.is_main_process: 
                    
                    cfg = 7
                    if (step + 0) % args.vis_interval == 0:           
                        scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") 
                        scheduler.set_timesteps(50) 
                        noise = torch.randn((args.vis_num, 4, 64, 64)).to("cuda") 
                        input = noise

                        encoder_hidden_states_cond = text_encoder(batch["prompts_cond"])[0] 
                        encoder_hidden_states_nocond = text_encoder(batch["prompts_nocond"])[0] 

                        texts = batch["prompts_cond"]
                        
                        f = open(f'{args.output_dir}/[{epoch}]_{(step + 1) // args.vis_interval}_prompt_{args.local_rank}.txt', 'w+')
                        for text in texts:
                            # also need to call a function to map back
                            sentence = tokenizer.decode(text)
                            f.write(sentence + '\n')
                        f.close()

                        for t in tqdm(scheduler.timesteps):
                            with torch.no_grad():  # classifier free guidance

                                noise_pred_cond = unet(sample=input.half(), timestep=t, encoder_hidden_states=encoder_hidden_states_cond[:args.vis_num]).sample # b, 4, 64, 64
                                noise_pred_uncond = unet(sample=input.half(), timestep=t, encoder_hidden_states=encoder_hidden_states_nocond[:args.vis_num]).sample # b, 4, 64, 64
                                noisy_residual = noise_pred_uncond + cfg * (noise_pred_cond - noise_pred_uncond) # b, 4, 64, 64     
                                prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
                                input = prev_noisy_sample

                        # decode
                        input = 1 / vae.config.scaling_factor * input 
                        images = vae.decode(input.half(), return_dict=False)[0] 
                        ## save predicted images
                        width, height = 512, 512
                        new_image = Image.new('RGB', (4*width, 4*height))
                        for index, image in enumerate(images.float()):
                            image = (image / 2 + 0.5).clamp(0, 1).unsqueeze(0)
                            image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
                            image = Image.fromarray((image * 255).round().astype("uint8")).convert('RGB')
                            row = index // 4
                            col = index % 4
                            new_image.paste(image, (col*width, row*height))
                        new_image.save(f'{args.output_dir}/[{epoch}]_{(step + 1) // args.vis_interval}_pred_img_cfg{cfg}_{args.local_rank}.jpg')
                        ## save original images
                        width, height = 512, 512
                        new_image = Image.new('RGB', (4*width, 4*height))
                        for index, image in enumerate(batch["images"][:args.vis_num]):
                            image = (image / 2 + 0.5).clamp(0, 1).unsqueeze(0)
                            image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
                            image = Image.fromarray((image * 255).round().astype("uint8")).convert('RGB')
                            # pred_images.append(image)
                            row = index // 4
                            col = index % 4
                            new_image.paste(image, (col*width, row*height))
                        new_image.save(f'{args.output_dir}/[{epoch}]_{(step + 1) // args.vis_interval}_orig_img_{args.local_rank}.jpg')
                       
                        scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") 
                        scheduler.set_timesteps(50) 
                        noise = torch.randn((args.vis_num, 4, 64, 64)).to("cuda") 
                        input = noise

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                if args.use_ema:
                    ema_unet.step(unet.parameters())
                progress_bar.update(1)
                global_step += 1
                accelerator.log({"train_loss": train_loss}, step=global_step)
                train_loss = 0.0

                if global_step % args.checkpointing_steps == 0:
                    if accelerator.is_main_process:
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

            logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)

            if global_step >= args.max_train_steps:
                break

    # Create the pipeline using the trained modules and save it.
    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
        unet = accelerator.unwrap_model(unet)
        if args.use_ema:
            ema_unet.copy_to(unet.parameters())

        pipeline = StableDiffusionPipeline.from_pretrained(
            args.pretrained_model_name_or_path,
            text_encoder=text_encoder,
            vae=vae,
            unet=unet,
            revision=args.revision,
        )
        pipeline.save_pretrained(args.output_dir)

        if args.push_to_hub:
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )

    accelerator.end_training()


if __name__ == "__main__":
    main()