Spaces:
Sleeping
Sleeping
| from __future__ import absolute_import, division, print_function | |
| import argparse | |
| import logging | |
| import os | |
| import json | |
| import random | |
| import numpy as np | |
| import torch | |
| from torch.utils.data import (DataLoader, SequentialSampler) | |
| from torch.utils.data.distributed import DistributedSampler | |
| try: | |
| from torch.utils.tensorboard import SummaryWriter | |
| except: | |
| from tensorboardX import SummaryWriter | |
| import tqdm | |
| from s2s_ft.modeling import BertForSequenceToSequenceWithPseudoMask, BertForSequenceToSequenceUniLMV1 | |
| from transformers import AdamW, get_linear_schedule_with_warmup | |
| from transformers import \ | |
| RobertaConfig, BertConfig, \ | |
| BertTokenizer, RobertaTokenizer, \ | |
| XLMRobertaConfig, XLMRobertaTokenizer, \ | |
| ElectraConfig, ElectraTokenizer | |
| from s2s_ft.configuration_unilm import UnilmConfig | |
| from s2s_ft.tokenization_unilm import UnilmTokenizer | |
| from s2s_ft.configuration_minilm import MinilmConfig | |
| from s2s_ft.tokenization_minilm import MinilmTokenizer | |
| from s2s_ft import utils | |
| from s2s_ft.config import BertForSeq2SeqConfig | |
| logger = logging.getLogger(__name__) | |
| MODEL_CLASSES = { | |
| 'bert': (BertConfig, BertTokenizer), | |
| 'minilm': (MinilmConfig, MinilmTokenizer), | |
| 'roberta': (RobertaConfig, RobertaTokenizer), | |
| 'xlm-roberta': (XLMRobertaConfig, XLMRobertaTokenizer), | |
| 'unilm': (UnilmConfig, UnilmTokenizer), | |
| 'electra': (ElectraConfig, ElectraTokenizer), | |
| } | |
| def prepare_for_training(args, model, checkpoint_state_dict, amp): | |
| no_decay = ['bias', 'LayerNorm.weight'] | |
| optimizer_grouped_parameters = [ | |
| {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], | |
| 'weight_decay': args.weight_decay}, | |
| {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} | |
| ] | |
| optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) | |
| if checkpoint_state_dict: | |
| optimizer.load_state_dict(checkpoint_state_dict['optimizer']) | |
| model.load_state_dict(checkpoint_state_dict['model']) | |
| # then remove optimizer state to make amp happy | |
| # https://github.com/NVIDIA/apex/issues/480#issuecomment-587154020 | |
| if amp: | |
| optimizer.state = {} | |
| if amp: | |
| model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) | |
| if checkpoint_state_dict: | |
| amp.load_state_dict(checkpoint_state_dict['amp']) | |
| # Black Tech from https://github.com/NVIDIA/apex/issues/480#issuecomment-587154020 | |
| # forward, backward, optimizer step, zero_grad | |
| random_input = {'source_ids': torch.ones(size=(2, 2), device=args.device, dtype=torch.long), | |
| 'target_ids': torch.ones(size=(2, 2), device=args.device, dtype=torch.long), | |
| 'label_ids': torch.ones(size=(2, 2), device=args.device, dtype=torch.long), | |
| 'pseudo_ids': torch.ones(size=(2, 2), device=args.device, dtype=torch.long), | |
| 'num_source_tokens': torch.zeros(size=(2,), device=args.device, dtype=torch.long), | |
| 'num_target_tokens': torch.zeros(size=(2,), device=args.device, dtype=torch.long)} | |
| loss = model(**random_input) | |
| print("Loss = %f" % loss.cpu().item()) | |
| with amp.scale_loss(loss, optimizer) as scaled_loss: | |
| scaled_loss.backward() | |
| optimizer.step() | |
| model.zero_grad() | |
| # then load optimizer state_dict again (this time without removing optimizer.state) | |
| optimizer.load_state_dict(checkpoint_state_dict['optimizer']) | |
| # multi-gpu training (should be after apex fp16 initialization) | |
| if args.n_gpu > 1: | |
| model = torch.nn.DataParallel(model) | |
| # Distributed training (should be after apex fp16 initialization) | |
| if args.local_rank != -1: | |
| model = torch.nn.parallel.DistributedDataParallel( | |
| model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) | |
| return model, optimizer | |
| def train(args, training_features, model, tokenizer): | |
| """ Train the model """ | |
| if args.local_rank in [-1, 0] and args.log_dir: | |
| tb_writer = SummaryWriter(log_dir=args.log_dir) | |
| else: | |
| tb_writer = None | |
| if args.fp16: | |
| try: | |
| from apex import amp | |
| except ImportError: | |
| raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
| else: | |
| amp = None | |
| # model recover | |
| recover_step = utils.get_max_epoch_model(args.output_dir) | |
| if recover_step: | |
| checkpoint_state_dict = utils.get_checkpoint_state_dict(args.output_dir, recover_step) | |
| else: | |
| checkpoint_state_dict = None | |
| model.to(args.device) | |
| model, optimizer = prepare_for_training(args, model, checkpoint_state_dict, amp=amp) | |
| per_node_train_batch_size = args.per_gpu_train_batch_size * args.n_gpu * args.gradient_accumulation_steps | |
| train_batch_size = per_node_train_batch_size * (torch.distributed.get_world_size() if args.local_rank != -1 else 1) | |
| global_step = recover_step if recover_step else 0 | |
| if args.num_training_steps == -1: | |
| args.num_training_steps = args.num_training_epochs * len(training_features) / train_batch_size | |
| scheduler = get_linear_schedule_with_warmup( | |
| optimizer, num_warmup_steps=args.num_warmup_steps, | |
| num_training_steps=args.num_training_steps, last_epoch=-1) | |
| if checkpoint_state_dict: | |
| scheduler.load_state_dict(checkpoint_state_dict["lr_scheduler"]) | |
| train_dataset = utils.Seq2seqDatasetForBert( | |
| features=training_features, max_source_len=args.max_source_seq_length, | |
| max_target_len=args.max_target_seq_length, vocab_size=tokenizer.vocab_size, | |
| cls_id=tokenizer.cls_token_id, sep_id=tokenizer.sep_token_id, pad_id=tokenizer.pad_token_id, | |
| mask_id=tokenizer.mask_token_id, random_prob=args.random_prob, keep_prob=args.keep_prob, | |
| offset=train_batch_size * global_step, num_training_instances=train_batch_size * args.num_training_steps, | |
| source_mask_prob=args.source_mask_prob, target_mask_prob=args.target_mask_prob, | |
| mask_way=args.mask_way, num_max_mask_token=args.num_max_mask_token, | |
| ) | |
| logger.info("Check dataset:") | |
| for i in range(5): | |
| source_ids, target_ids = train_dataset.__getitem__(i)[:2] | |
| logger.info("Instance-%d" % i) | |
| logger.info("Source tokens = %s" % " ".join(tokenizer.convert_ids_to_tokens(source_ids))) | |
| logger.info("Target tokens = %s" % " ".join(tokenizer.convert_ids_to_tokens(target_ids))) | |
| logger.info("Mode = %s" % str(model)) | |
| # Train! | |
| logger.info(" ***** Running training ***** *") | |
| logger.info(" Num examples = %d", len(training_features)) | |
| logger.info(" Num Epochs = %.2f", len(train_dataset) / len(training_features)) | |
| logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) | |
| logger.info(" Batch size per node = %d", per_node_train_batch_size) | |
| logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", train_batch_size) | |
| logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) | |
| logger.info(" Total optimization steps = %d", args.num_training_steps) | |
| if args.num_training_steps <= global_step: | |
| logger.info("Training is done. Please use a new dir or clean this dir!") | |
| else: | |
| # The training features are shuffled | |
| train_sampler = SequentialSampler(train_dataset) \ | |
| if args.local_rank == -1 else DistributedSampler(train_dataset, shuffle=False) | |
| train_dataloader = DataLoader( | |
| train_dataset, sampler=train_sampler, | |
| batch_size=per_node_train_batch_size // args.gradient_accumulation_steps, | |
| collate_fn=utils.batch_list_to_batch_tensors) | |
| train_iterator = tqdm.tqdm( | |
| train_dataloader, initial=global_step * args.gradient_accumulation_steps, | |
| desc="Iter (loss=X.XXX, lr=X.XXXXXXX)", disable=args.local_rank not in [-1, 0]) | |
| model.train() | |
| model.zero_grad() | |
| tr_loss, logging_loss = 0.0, 0.0 | |
| for step, batch in enumerate(train_iterator): | |
| if global_step > args.num_training_steps: | |
| break | |
| batch = tuple(t.to(args.device) for t in batch) | |
| if args.mask_way == 'v2': | |
| inputs = {'source_ids': batch[0], | |
| 'target_ids': batch[1], | |
| 'label_ids': batch[2], | |
| 'pseudo_ids': batch[3], | |
| 'num_source_tokens': batch[4], | |
| 'num_target_tokens': batch[5]} | |
| elif args.mask_way == 'v1' or args.mask_way == 'v0': | |
| inputs = {'source_ids': batch[0], | |
| 'target_ids': batch[1], | |
| 'masked_ids': batch[2], | |
| 'masked_pos': batch[3], | |
| 'masked_weight': batch[4], | |
| 'num_source_tokens': batch[5], | |
| 'num_target_tokens': batch[6]} | |
| loss = model(**inputs) | |
| if args.n_gpu > 1: | |
| loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training | |
| train_iterator.set_description('Iter (loss=%5.3f) lr=%9.7f' % (loss.item(), scheduler.get_lr()[0])) | |
| if args.gradient_accumulation_steps > 1: | |
| loss = loss / args.gradient_accumulation_steps | |
| if args.fp16: | |
| with amp.scale_loss(loss, optimizer) as scaled_loss: | |
| scaled_loss.backward() | |
| else: | |
| loss.backward() | |
| logging_loss += loss.item() | |
| if (step + 1) % args.gradient_accumulation_steps == 0: | |
| if args.fp16: | |
| torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) | |
| else: | |
| torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) | |
| optimizer.step() | |
| scheduler.step() # Update learning rate schedule | |
| model.zero_grad() | |
| global_step += 1 | |
| if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: | |
| logger.info("") | |
| logger.info(" Step [%d ~ %d]: %.2f", global_step - args.logging_steps, global_step, logging_loss) | |
| logging_loss = 0.0 | |
| if args.local_rank in [-1, 0] and args.save_steps > 0 and \ | |
| (global_step % args.save_steps == 0 or global_step == args.num_training_steps): | |
| save_path = os.path.join(args.output_dir, "ckpt-%d" % global_step) | |
| os.makedirs(save_path, exist_ok=True) | |
| model_to_save = model.module if hasattr(model, "module") else model | |
| model_to_save.save_pretrained(save_path) | |
| optim_to_save = { | |
| "optimizer": optimizer.state_dict(), | |
| "lr_scheduler": scheduler.state_dict(), | |
| } | |
| if args.fp16: | |
| optim_to_save["amp"] = amp.state_dict() | |
| torch.save(optim_to_save, os.path.join(save_path, utils.OPTIM_NAME)) | |
| logger.info("Saving model checkpoint %d into %s", global_step, save_path) | |
| if args.local_rank in [-1, 0] and tb_writer: | |
| tb_writer.close() | |
| def get_args(): | |
| parser = argparse.ArgumentParser() | |
| # parser.add_argument("--train_source_file", default=None, type=str, required=True, | |
| # help="Training data contains source") | |
| # parser.add_argument("--train_target_file", default=None, type=str, required=True, | |
| # help="Training data contains target") | |
| parser.add_argument("--train_file", default=None, type=str, required=True, | |
| help="Training data (json format) for training. Keys: source and target") | |
| parser.add_argument("--model_type", default=None, type=str, required=True, | |
| help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys())) | |
| parser.add_argument("--model_name_or_path", default=None, type=str, required=True, | |
| help="Path to pre-trained model or shortcut name selected in the list:") | |
| parser.add_argument("--output_dir", default=None, type=str, required=True, | |
| help="The output directory where the model checkpoints and predictions will be written.") | |
| parser.add_argument("--log_dir", default=None, type=str, | |
| help="The output directory where the log will be written.") | |
| ## Other parameters | |
| parser.add_argument("--config_name", default=None, type=str, | |
| help="Pretrained config name or path if not the same as model_name") | |
| parser.add_argument("--tokenizer_name", default=None, type=str, | |
| help="Pretrained tokenizer name or path if not the same as model_name") | |
| parser.add_argument("--cache_dir", default=None, type=str, | |
| help="Where do you want to store the pre-trained models downloaded from s3") | |
| parser.add_argument("--max_source_seq_length", default=464, type=int, | |
| help="The maximum total source sequence length after WordPiece tokenization. Sequences " | |
| "longer than this will be truncated, and sequences shorter than this will be padded.") | |
| parser.add_argument("--max_target_seq_length", default=48, type=int, | |
| help="The maximum total target sequence length after WordPiece tokenization. Sequences " | |
| "longer than this will be truncated, and sequences shorter than this will be padded.") | |
| parser.add_argument("--cached_train_features_file", default=None, type=str, | |
| help="Cached training features file") | |
| parser.add_argument("--do_lower_case", action='store_true', | |
| help="Set this flag if you are using an uncased model.") | |
| parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, | |
| help="Batch size per GPU/CPU for training.") | |
| parser.add_argument("--learning_rate", default=5e-5, type=float, | |
| help="The initial learning rate for Adam.") | |
| parser.add_argument('--gradient_accumulation_steps', type=int, default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.") | |
| parser.add_argument("--weight_decay", default=0.01, type=float, | |
| help="Weight decay if we apply some.") | |
| parser.add_argument("--adam_epsilon", default=1e-8, type=float, | |
| help="Epsilon for Adam optimizer.") | |
| parser.add_argument("--max_grad_norm", default=1.0, type=float, | |
| help="Max gradient norm.") | |
| parser.add_argument("--label_smoothing", default=0.1, type=float, | |
| help="Max gradient norm.") | |
| parser.add_argument("--num_training_steps", default=-1, type=int, | |
| help="set total number of training steps to perform") | |
| parser.add_argument("--num_training_epochs", default=10, type=int, | |
| help="set total number of training epochs to perform (--num_training_steps has higher priority)") | |
| parser.add_argument("--num_warmup_steps", default=0, type=int, | |
| help="Linear warmup over warmup_steps.") | |
| parser.add_argument("--random_prob", default=0.1, type=float, | |
| help="prob to random replace a masked token") | |
| parser.add_argument("--keep_prob", default=0.1, type=float, | |
| help="prob to keep no change for a masked token") | |
| parser.add_argument("--fix_word_embedding", action='store_true', | |
| help="Set word embedding no grad when finetuning.") | |
| parser.add_argument('--logging_steps', type=int, default=500, | |
| help="Log every X updates steps.") | |
| parser.add_argument('--save_steps', type=int, default=1500, | |
| help="Save checkpoint every X updates steps.") | |
| parser.add_argument("--no_cuda", action='store_true', | |
| help="Whether not to use CUDA when available") | |
| parser.add_argument('--seed', type=int, default=42, | |
| help="random seed for initialization") | |
| parser.add_argument("--local_rank", type=int, default=-1, | |
| help="local_rank for distributed training on gpus") | |
| parser.add_argument('--fp16', action='store_true', | |
| help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") | |
| parser.add_argument('--fp16_opt_level', type=str, default='O1', | |
| help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." | |
| "See details at https://nvidia.github.io/apex/amp.html") | |
| parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.") | |
| parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.") | |
| parser.add_argument('--source_mask_prob', type=float, default=-1.0, | |
| help="Probability to mask source sequence in fine-tuning") | |
| parser.add_argument('--target_mask_prob', type=float, default=0.5, | |
| help="Probability to mask target sequence in fine-tuning") | |
| parser.add_argument('--num_max_mask_token', type=int, default=0, | |
| help="The number of the max masked tokens in target sequence") | |
| parser.add_argument('--mask_way', type=str, default='v2', | |
| help="Fine-tuning method (v0: position shift, v1: masked LM, v2: pseudo-masking)") | |
| parser.add_argument("--lmdb_cache", action='store_true', | |
| help="Use LMDB to cache training features") | |
| parser.add_argument("--lmdb_dtype", type=str, default='h', | |
| help="Data type for cached data type for LMDB") | |
| parser.add_argument | |
| args = parser.parse_args() | |
| return args | |
| def prepare(args): | |
| # Setup distant debugging if needed | |
| if args.server_ip and args.server_port: | |
| # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script | |
| import ptvsd | |
| print("Waiting for debugger attach") | |
| ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) | |
| ptvsd.wait_for_attach() | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| json.dump(args.__dict__, open(os.path.join( | |
| args.output_dir, 'train_opt.json'), 'w'), sort_keys=True, indent=2) | |
| # Setup CUDA, GPU & distributed training | |
| if args.local_rank == -1 or args.no_cuda: | |
| device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") | |
| args.n_gpu = torch.cuda.device_count() | |
| else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs | |
| torch.cuda.set_device(args.local_rank) | |
| device = torch.device("cuda", args.local_rank) | |
| torch.distributed.init_process_group(backend='nccl') | |
| args.n_gpu = 1 | |
| args.device = device | |
| # Setup logging | |
| logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', | |
| datefmt='%m/%d/%Y %H:%M:%S', | |
| level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) | |
| logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", | |
| args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) | |
| # Set seed | |
| random.seed(args.seed) | |
| np.random.seed(args.seed) | |
| torch.manual_seed(args.seed) | |
| if args.n_gpu > 0: | |
| torch.cuda.manual_seed_all(args.seed) | |
| logger.info("Training/evaluation parameters %s", args) | |
| # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set. | |
| # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will | |
| # remove the need for this code, but it is still valid. | |
| if args.fp16: | |
| try: | |
| import apex | |
| apex.amp.register_half_function(torch, 'einsum') | |
| except ImportError: | |
| raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
| def get_model_and_tokenizer(args): | |
| config_class, tokenizer_class = MODEL_CLASSES[args.model_type] | |
| model_config = config_class.from_pretrained( | |
| args.config_name if args.config_name else args.model_name_or_path, | |
| cache_dir=args.cache_dir if args.cache_dir else None) | |
| config = BertForSeq2SeqConfig.from_exist_config( | |
| config=model_config, label_smoothing=args.label_smoothing, | |
| fix_word_embedding=args.fix_word_embedding, | |
| max_position_embeddings=args.max_source_seq_length + args.max_target_seq_length) | |
| logger.info("Model config for seq2seq: %s", str(config)) | |
| tokenizer = tokenizer_class.from_pretrained( | |
| args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, | |
| do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None) | |
| model_class = \ | |
| BertForSequenceToSequenceWithPseudoMask if args.mask_way == 'v2' \ | |
| else BertForSequenceToSequenceUniLMV1 | |
| logger.info("Construct model %s" % model_class.MODEL_NAME) | |
| model = model_class.from_pretrained( | |
| args.model_name_or_path, config=config, model_type=args.model_type, | |
| reuse_position_embedding=True, | |
| cache_dir=args.cache_dir if args.cache_dir else None) | |
| return model, tokenizer | |
| def main(): | |
| args = get_args() | |
| prepare(args) | |
| if args.local_rank not in [-1, 0]: | |
| torch.distributed.barrier() | |
| # Make sure only the first process in distributed training will download model & vocab | |
| # Load pretrained model and tokenizer | |
| model, tokenizer = get_model_and_tokenizer(args) | |
| if args.local_rank == 0: | |
| torch.distributed.barrier() | |
| # Make sure only the first process in distributed training will download model & vocab | |
| if args.cached_train_features_file is None: | |
| if not args.lmdb_cache: | |
| args.cached_train_features_file = os.path.join(args.output_dir, "cached_features_for_training.pt") | |
| else: | |
| args.cached_train_features_file = os.path.join(args.output_dir, "cached_features_for_training_lmdb") | |
| training_features = utils.load_and_cache_examples( | |
| example_file=args.train_file, tokenizer=tokenizer, local_rank=args.local_rank, | |
| cached_features_file=args.cached_train_features_file, shuffle=True, | |
| lmdb_cache=args.lmdb_cache, lmdb_dtype=args.lmdb_dtype, | |
| ) | |
| train(args, training_features, model, tokenizer) | |
| if __name__ == "__main__": | |
| main() | |