Spaces:
Sleeping
Sleeping
File size: 23,338 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
from __future__ import absolute_import, division, print_function
import argparse
import logging
import os
import json
import random
import numpy as np
import torch
from torch.utils.data import (DataLoader, SequentialSampler)
from torch.utils.data.distributed import DistributedSampler
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
import tqdm
from s2s_ft.modeling import BertForSequenceToSequenceWithPseudoMask, BertForSequenceToSequenceUniLMV1
from transformers import AdamW, get_linear_schedule_with_warmup
from transformers import \
RobertaConfig, BertConfig, \
BertTokenizer, RobertaTokenizer, \
XLMRobertaConfig, XLMRobertaTokenizer, \
ElectraConfig, ElectraTokenizer
from s2s_ft.configuration_unilm import UnilmConfig
from s2s_ft.tokenization_unilm import UnilmTokenizer
from s2s_ft.configuration_minilm import MinilmConfig
from s2s_ft.tokenization_minilm import MinilmTokenizer
from s2s_ft import utils
from s2s_ft.config import BertForSeq2SeqConfig
logger = logging.getLogger(__name__)
MODEL_CLASSES = {
'bert': (BertConfig, BertTokenizer),
'minilm': (MinilmConfig, MinilmTokenizer),
'roberta': (RobertaConfig, RobertaTokenizer),
'xlm-roberta': (XLMRobertaConfig, XLMRobertaTokenizer),
'unilm': (UnilmConfig, UnilmTokenizer),
'electra': (ElectraConfig, ElectraTokenizer),
}
def prepare_for_training(args, model, checkpoint_state_dict, amp):
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
if checkpoint_state_dict:
optimizer.load_state_dict(checkpoint_state_dict['optimizer'])
model.load_state_dict(checkpoint_state_dict['model'])
# then remove optimizer state to make amp happy
# https://github.com/NVIDIA/apex/issues/480#issuecomment-587154020
if amp:
optimizer.state = {}
if amp:
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
if checkpoint_state_dict:
amp.load_state_dict(checkpoint_state_dict['amp'])
# Black Tech from https://github.com/NVIDIA/apex/issues/480#issuecomment-587154020
# forward, backward, optimizer step, zero_grad
random_input = {'source_ids': torch.ones(size=(2, 2), device=args.device, dtype=torch.long),
'target_ids': torch.ones(size=(2, 2), device=args.device, dtype=torch.long),
'label_ids': torch.ones(size=(2, 2), device=args.device, dtype=torch.long),
'pseudo_ids': torch.ones(size=(2, 2), device=args.device, dtype=torch.long),
'num_source_tokens': torch.zeros(size=(2,), device=args.device, dtype=torch.long),
'num_target_tokens': torch.zeros(size=(2,), device=args.device, dtype=torch.long)}
loss = model(**random_input)
print("Loss = %f" % loss.cpu().item())
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
optimizer.step()
model.zero_grad()
# then load optimizer state_dict again (this time without removing optimizer.state)
optimizer.load_state_dict(checkpoint_state_dict['optimizer'])
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True)
return model, optimizer
def train(args, training_features, model, tokenizer):
""" Train the model """
if args.local_rank in [-1, 0] and args.log_dir:
tb_writer = SummaryWriter(log_dir=args.log_dir)
else:
tb_writer = None
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
else:
amp = None
# model recover
recover_step = utils.get_max_epoch_model(args.output_dir)
if recover_step:
checkpoint_state_dict = utils.get_checkpoint_state_dict(args.output_dir, recover_step)
else:
checkpoint_state_dict = None
model.to(args.device)
model, optimizer = prepare_for_training(args, model, checkpoint_state_dict, amp=amp)
per_node_train_batch_size = args.per_gpu_train_batch_size * args.n_gpu * args.gradient_accumulation_steps
train_batch_size = per_node_train_batch_size * (torch.distributed.get_world_size() if args.local_rank != -1 else 1)
global_step = recover_step if recover_step else 0
if args.num_training_steps == -1:
args.num_training_steps = args.num_training_epochs * len(training_features) / train_batch_size
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.num_training_steps, last_epoch=-1)
if checkpoint_state_dict:
scheduler.load_state_dict(checkpoint_state_dict["lr_scheduler"])
train_dataset = utils.Seq2seqDatasetForBert(
features=training_features, max_source_len=args.max_source_seq_length,
max_target_len=args.max_target_seq_length, vocab_size=tokenizer.vocab_size,
cls_id=tokenizer.cls_token_id, sep_id=tokenizer.sep_token_id, pad_id=tokenizer.pad_token_id,
mask_id=tokenizer.mask_token_id, random_prob=args.random_prob, keep_prob=args.keep_prob,
offset=train_batch_size * global_step, num_training_instances=train_batch_size * args.num_training_steps,
source_mask_prob=args.source_mask_prob, target_mask_prob=args.target_mask_prob,
mask_way=args.mask_way, num_max_mask_token=args.num_max_mask_token,
)
logger.info("Check dataset:")
for i in range(5):
source_ids, target_ids = train_dataset.__getitem__(i)[:2]
logger.info("Instance-%d" % i)
logger.info("Source tokens = %s" % " ".join(tokenizer.convert_ids_to_tokens(source_ids)))
logger.info("Target tokens = %s" % " ".join(tokenizer.convert_ids_to_tokens(target_ids)))
logger.info("Mode = %s" % str(model))
# Train!
logger.info(" ***** Running training ***** *")
logger.info(" Num examples = %d", len(training_features))
logger.info(" Num Epochs = %.2f", len(train_dataset) / len(training_features))
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Batch size per node = %d", per_node_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", train_batch_size)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", args.num_training_steps)
if args.num_training_steps <= global_step:
logger.info("Training is done. Please use a new dir or clean this dir!")
else:
# The training features are shuffled
train_sampler = SequentialSampler(train_dataset) \
if args.local_rank == -1 else DistributedSampler(train_dataset, shuffle=False)
train_dataloader = DataLoader(
train_dataset, sampler=train_sampler,
batch_size=per_node_train_batch_size // args.gradient_accumulation_steps,
collate_fn=utils.batch_list_to_batch_tensors)
train_iterator = tqdm.tqdm(
train_dataloader, initial=global_step * args.gradient_accumulation_steps,
desc="Iter (loss=X.XXX, lr=X.XXXXXXX)", disable=args.local_rank not in [-1, 0])
model.train()
model.zero_grad()
tr_loss, logging_loss = 0.0, 0.0
for step, batch in enumerate(train_iterator):
if global_step > args.num_training_steps:
break
batch = tuple(t.to(args.device) for t in batch)
if args.mask_way == 'v2':
inputs = {'source_ids': batch[0],
'target_ids': batch[1],
'label_ids': batch[2],
'pseudo_ids': batch[3],
'num_source_tokens': batch[4],
'num_target_tokens': batch[5]}
elif args.mask_way == 'v1' or args.mask_way == 'v0':
inputs = {'source_ids': batch[0],
'target_ids': batch[1],
'masked_ids': batch[2],
'masked_pos': batch[3],
'masked_weight': batch[4],
'num_source_tokens': batch[5],
'num_target_tokens': batch[6]}
loss = model(**inputs)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
train_iterator.set_description('Iter (loss=%5.3f) lr=%9.7f' % (loss.item(), scheduler.get_lr()[0]))
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
logging_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
logger.info("")
logger.info(" Step [%d ~ %d]: %.2f", global_step - args.logging_steps, global_step, logging_loss)
logging_loss = 0.0
if args.local_rank in [-1, 0] and args.save_steps > 0 and \
(global_step % args.save_steps == 0 or global_step == args.num_training_steps):
save_path = os.path.join(args.output_dir, "ckpt-%d" % global_step)
os.makedirs(save_path, exist_ok=True)
model_to_save = model.module if hasattr(model, "module") else model
model_to_save.save_pretrained(save_path)
optim_to_save = {
"optimizer": optimizer.state_dict(),
"lr_scheduler": scheduler.state_dict(),
}
if args.fp16:
optim_to_save["amp"] = amp.state_dict()
torch.save(optim_to_save, os.path.join(save_path, utils.OPTIM_NAME))
logger.info("Saving model checkpoint %d into %s", global_step, save_path)
if args.local_rank in [-1, 0] and tb_writer:
tb_writer.close()
def get_args():
parser = argparse.ArgumentParser()
# parser.add_argument("--train_source_file", default=None, type=str, required=True,
# help="Training data contains source")
# parser.add_argument("--train_target_file", default=None, type=str, required=True,
# help="Training data contains target")
parser.add_argument("--train_file", default=None, type=str, required=True,
help="Training data (json format) for training. Keys: source and target")
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list:")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model checkpoints and predictions will be written.")
parser.add_argument("--log_dir", default=None, type=str,
help="The output directory where the log will be written.")
## Other parameters
parser.add_argument("--config_name", default=None, type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default=None, type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--cache_dir", default=None, type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--max_source_seq_length", default=464, type=int,
help="The maximum total source sequence length after WordPiece tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded.")
parser.add_argument("--max_target_seq_length", default=48, type=int,
help="The maximum total target sequence length after WordPiece tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded.")
parser.add_argument("--cached_train_features_file", default=None, type=str,
help="Cached training features file")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--weight_decay", default=0.01, type=float,
help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--label_smoothing", default=0.1, type=float,
help="Max gradient norm.")
parser.add_argument("--num_training_steps", default=-1, type=int,
help="set total number of training steps to perform")
parser.add_argument("--num_training_epochs", default=10, type=int,
help="set total number of training epochs to perform (--num_training_steps has higher priority)")
parser.add_argument("--num_warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument("--random_prob", default=0.1, type=float,
help="prob to random replace a masked token")
parser.add_argument("--keep_prob", default=0.1, type=float,
help="prob to keep no change for a masked token")
parser.add_argument("--fix_word_embedding", action='store_true',
help="Set word embedding no grad when finetuning.")
parser.add_argument('--logging_steps', type=int, default=500,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=1500,
help="Save checkpoint every X updates steps.")
parser.add_argument("--no_cuda", action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument("--local_rank", type=int, default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--source_mask_prob', type=float, default=-1.0,
help="Probability to mask source sequence in fine-tuning")
parser.add_argument('--target_mask_prob', type=float, default=0.5,
help="Probability to mask target sequence in fine-tuning")
parser.add_argument('--num_max_mask_token', type=int, default=0,
help="The number of the max masked tokens in target sequence")
parser.add_argument('--mask_way', type=str, default='v2',
help="Fine-tuning method (v0: position shift, v1: masked LM, v2: pseudo-masking)")
parser.add_argument("--lmdb_cache", action='store_true',
help="Use LMDB to cache training features")
parser.add_argument("--lmdb_dtype", type=str, default='h',
help="Data type for cached data type for LMDB")
parser.add_argument
args = parser.parse_args()
return args
def prepare(args):
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
os.makedirs(args.output_dir, exist_ok=True)
json.dump(args.__dict__, open(os.path.join(
args.output_dir, 'train_opt.json'), 'w'), sort_keys=True, indent=2)
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
logger.info("Training/evaluation parameters %s", args)
# Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
# Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
# remove the need for this code, but it is still valid.
if args.fp16:
try:
import apex
apex.amp.register_half_function(torch, 'einsum')
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
def get_model_and_tokenizer(args):
config_class, tokenizer_class = MODEL_CLASSES[args.model_type]
model_config = config_class.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
cache_dir=args.cache_dir if args.cache_dir else None)
config = BertForSeq2SeqConfig.from_exist_config(
config=model_config, label_smoothing=args.label_smoothing,
fix_word_embedding=args.fix_word_embedding,
max_position_embeddings=args.max_source_seq_length + args.max_target_seq_length)
logger.info("Model config for seq2seq: %s", str(config))
tokenizer = tokenizer_class.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None)
model_class = \
BertForSequenceToSequenceWithPseudoMask if args.mask_way == 'v2' \
else BertForSequenceToSequenceUniLMV1
logger.info("Construct model %s" % model_class.MODEL_NAME)
model = model_class.from_pretrained(
args.model_name_or_path, config=config, model_type=args.model_type,
reuse_position_embedding=True,
cache_dir=args.cache_dir if args.cache_dir else None)
return model, tokenizer
def main():
args = get_args()
prepare(args)
if args.local_rank not in [-1, 0]:
torch.distributed.barrier()
# Make sure only the first process in distributed training will download model & vocab
# Load pretrained model and tokenizer
model, tokenizer = get_model_and_tokenizer(args)
if args.local_rank == 0:
torch.distributed.barrier()
# Make sure only the first process in distributed training will download model & vocab
if args.cached_train_features_file is None:
if not args.lmdb_cache:
args.cached_train_features_file = os.path.join(args.output_dir, "cached_features_for_training.pt")
else:
args.cached_train_features_file = os.path.join(args.output_dir, "cached_features_for_training_lmdb")
training_features = utils.load_and_cache_examples(
example_file=args.train_file, tokenizer=tokenizer, local_rank=args.local_rank,
cached_features_file=args.cached_train_features_file, shuffle=True,
lmdb_cache=args.lmdb_cache, lmdb_dtype=args.lmdb_dtype,
)
train(args, training_features, model, tokenizer)
if __name__ == "__main__":
main()
|