File size: 23,338 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
from __future__ import absolute_import, division, print_function

import argparse
import logging
import os
import json
import random

import numpy as np
import torch
from torch.utils.data import (DataLoader, SequentialSampler)
from torch.utils.data.distributed import DistributedSampler

try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

import tqdm

from s2s_ft.modeling import BertForSequenceToSequenceWithPseudoMask, BertForSequenceToSequenceUniLMV1
from transformers import AdamW, get_linear_schedule_with_warmup
from transformers import \
    RobertaConfig, BertConfig, \
    BertTokenizer, RobertaTokenizer, \
    XLMRobertaConfig, XLMRobertaTokenizer, \
    ElectraConfig, ElectraTokenizer
from s2s_ft.configuration_unilm import UnilmConfig
from s2s_ft.tokenization_unilm import UnilmTokenizer
from s2s_ft.configuration_minilm import MinilmConfig
from s2s_ft.tokenization_minilm import MinilmTokenizer

from s2s_ft import utils
from s2s_ft.config import BertForSeq2SeqConfig

logger = logging.getLogger(__name__)


MODEL_CLASSES = {
    'bert': (BertConfig, BertTokenizer),
    'minilm': (MinilmConfig, MinilmTokenizer),
    'roberta': (RobertaConfig, RobertaTokenizer),
    'xlm-roberta': (XLMRobertaConfig, XLMRobertaTokenizer),
    'unilm': (UnilmConfig, UnilmTokenizer),
    'electra': (ElectraConfig, ElectraTokenizer),
}


def prepare_for_training(args, model, checkpoint_state_dict, amp):
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
         'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)

    if checkpoint_state_dict:
        optimizer.load_state_dict(checkpoint_state_dict['optimizer'])
        model.load_state_dict(checkpoint_state_dict['model'])
        
        # then remove optimizer state to make amp happy
        # https://github.com/NVIDIA/apex/issues/480#issuecomment-587154020
        if amp:
            optimizer.state = {} 

    if amp:
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
        if checkpoint_state_dict:
            amp.load_state_dict(checkpoint_state_dict['amp'])

            # Black Tech from https://github.com/NVIDIA/apex/issues/480#issuecomment-587154020
            # forward, backward, optimizer step, zero_grad
            random_input = {'source_ids': torch.ones(size=(2, 2), device=args.device, dtype=torch.long),
                            'target_ids': torch.ones(size=(2, 2), device=args.device, dtype=torch.long),
                            'label_ids': torch.ones(size=(2, 2), device=args.device, dtype=torch.long), 
                            'pseudo_ids': torch.ones(size=(2, 2), device=args.device, dtype=torch.long),
                            'num_source_tokens': torch.zeros(size=(2,), device=args.device, dtype=torch.long),
                            'num_target_tokens': torch.zeros(size=(2,), device=args.device, dtype=torch.long)}
            loss = model(**random_input)
            print("Loss = %f" % loss.cpu().item())
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()
            optimizer.step()
            model.zero_grad()

            # then load optimizer state_dict again (this time without removing optimizer.state)
            optimizer.load_state_dict(checkpoint_state_dict['optimizer'])

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True)

    return model, optimizer


def train(args, training_features, model, tokenizer):
    """ Train the model """
    if args.local_rank in [-1, 0] and args.log_dir:
        tb_writer = SummaryWriter(log_dir=args.log_dir)
    else:
        tb_writer = None

    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
    else:
        amp = None

    # model recover
    recover_step = utils.get_max_epoch_model(args.output_dir)

    if recover_step:
        checkpoint_state_dict = utils.get_checkpoint_state_dict(args.output_dir, recover_step)
    else:
        checkpoint_state_dict = None

    model.to(args.device)
    model, optimizer = prepare_for_training(args, model, checkpoint_state_dict, amp=amp)

    per_node_train_batch_size = args.per_gpu_train_batch_size * args.n_gpu * args.gradient_accumulation_steps
    train_batch_size = per_node_train_batch_size * (torch.distributed.get_world_size() if args.local_rank != -1 else 1)
    global_step = recover_step if recover_step else 0

    if args.num_training_steps == -1:
        args.num_training_steps = args.num_training_epochs * len(training_features) / train_batch_size

    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.num_training_steps, last_epoch=-1)

    if checkpoint_state_dict:
        scheduler.load_state_dict(checkpoint_state_dict["lr_scheduler"])

    train_dataset = utils.Seq2seqDatasetForBert(
        features=training_features, max_source_len=args.max_source_seq_length,
        max_target_len=args.max_target_seq_length, vocab_size=tokenizer.vocab_size,
        cls_id=tokenizer.cls_token_id, sep_id=tokenizer.sep_token_id, pad_id=tokenizer.pad_token_id,
        mask_id=tokenizer.mask_token_id, random_prob=args.random_prob, keep_prob=args.keep_prob,
        offset=train_batch_size * global_step, num_training_instances=train_batch_size * args.num_training_steps,
        source_mask_prob=args.source_mask_prob, target_mask_prob=args.target_mask_prob, 
        mask_way=args.mask_way, num_max_mask_token=args.num_max_mask_token, 
    )

    logger.info("Check dataset:")
    for i in range(5):
        source_ids, target_ids = train_dataset.__getitem__(i)[:2]
        logger.info("Instance-%d" % i)
        logger.info("Source tokens = %s" % " ".join(tokenizer.convert_ids_to_tokens(source_ids)))
        logger.info("Target tokens = %s" % " ".join(tokenizer.convert_ids_to_tokens(target_ids)))

    logger.info("Mode = %s" % str(model))

    # Train!
    logger.info("  ***** Running training *****  *")
    logger.info("  Num examples = %d", len(training_features))
    logger.info("  Num Epochs = %.2f", len(train_dataset) / len(training_features))
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Batch size per node = %d", per_node_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d", train_batch_size)
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", args.num_training_steps)

    if args.num_training_steps <= global_step:
        logger.info("Training is done. Please use a new dir or clean this dir!")
    else:
        # The training features are shuffled
        train_sampler = SequentialSampler(train_dataset) \
            if args.local_rank == -1 else DistributedSampler(train_dataset, shuffle=False)
        train_dataloader = DataLoader(
            train_dataset, sampler=train_sampler,
            batch_size=per_node_train_batch_size // args.gradient_accumulation_steps,
            collate_fn=utils.batch_list_to_batch_tensors)

        train_iterator = tqdm.tqdm(
            train_dataloader, initial=global_step * args.gradient_accumulation_steps,
            desc="Iter (loss=X.XXX, lr=X.XXXXXXX)", disable=args.local_rank not in [-1, 0])

        model.train()
        model.zero_grad()

        tr_loss, logging_loss = 0.0, 0.0

        for step, batch in enumerate(train_iterator):
            if global_step > args.num_training_steps:
                break
            batch = tuple(t.to(args.device) for t in batch)
            if args.mask_way == 'v2':
                inputs = {'source_ids': batch[0],
                        'target_ids': batch[1],
                        'label_ids': batch[2], 
                        'pseudo_ids': batch[3],
                        'num_source_tokens': batch[4],
                        'num_target_tokens': batch[5]}
            elif args.mask_way == 'v1' or args.mask_way == 'v0':
                inputs = {'source_ids': batch[0],
                        'target_ids': batch[1],
                        'masked_ids': batch[2],
                        'masked_pos': batch[3],
                        'masked_weight': batch[4],
                        'num_source_tokens': batch[5],
                        'num_target_tokens': batch[6]}
            loss = model(**inputs)
            if args.n_gpu > 1:
                loss = loss.mean()  # mean() to average on multi-gpu parallel (not distributed) training

            train_iterator.set_description('Iter (loss=%5.3f) lr=%9.7f' % (loss.item(), scheduler.get_lr()[0]))

            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            logging_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    logger.info("")
                    logger.info(" Step [%d ~ %d]: %.2f", global_step - args.logging_steps, global_step, logging_loss)
                    logging_loss = 0.0

                if args.local_rank in [-1, 0] and args.save_steps > 0 and \
                        (global_step % args.save_steps == 0 or global_step == args.num_training_steps):

                    save_path = os.path.join(args.output_dir, "ckpt-%d" % global_step)
                    os.makedirs(save_path, exist_ok=True)
                    model_to_save = model.module if hasattr(model, "module") else model
                    model_to_save.save_pretrained(save_path)
                    
                    optim_to_save = {
                        "optimizer": optimizer.state_dict(),
                        "lr_scheduler": scheduler.state_dict(),
                    }
                    if args.fp16:
                        optim_to_save["amp"] = amp.state_dict()
                    torch.save(optim_to_save, os.path.join(save_path, utils.OPTIM_NAME))

                    logger.info("Saving model checkpoint %d into %s", global_step, save_path)

    if args.local_rank in [-1, 0] and tb_writer:
        tb_writer.close()


def get_args():
    parser = argparse.ArgumentParser()

    # parser.add_argument("--train_source_file", default=None, type=str, required=True,
    #                     help="Training data contains source")
    # parser.add_argument("--train_target_file", default=None, type=str, required=True,
    #                     help="Training data contains target")
    parser.add_argument("--train_file", default=None, type=str, required=True,
                        help="Training data (json format) for training. Keys: source and target")
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list:")
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model checkpoints and predictions will be written.")
    parser.add_argument("--log_dir", default=None, type=str,
                        help="The output directory where the log will be written.")

    ## Other parameters
    parser.add_argument("--config_name", default=None, type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default=None, type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default=None, type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")

    parser.add_argument("--max_source_seq_length", default=464, type=int,
                        help="The maximum total source sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--max_target_seq_length", default=48, type=int,
                        help="The maximum total target sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")

    parser.add_argument("--cached_train_features_file", default=None, type=str,
                        help="Cached training features file")
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--weight_decay", default=0.01, type=float,
                        help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
    parser.add_argument("--label_smoothing", default=0.1, type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_training_steps", default=-1, type=int,
                        help="set total number of training steps to perform")
    parser.add_argument("--num_training_epochs", default=10, type=int,
                        help="set total number of training epochs to perform (--num_training_steps has higher priority)")
    parser.add_argument("--num_warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")

    parser.add_argument("--random_prob", default=0.1, type=float,
                        help="prob to random replace a masked token")
    parser.add_argument("--keep_prob", default=0.1, type=float,
                        help="prob to keep no change for a masked token")
    parser.add_argument("--fix_word_embedding", action='store_true',
                        help="Set word embedding no grad when finetuning.")

    parser.add_argument('--logging_steps', type=int, default=500,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=1500,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--no_cuda", action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument("--local_rank", type=int, default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")

    parser.add_argument('--source_mask_prob', type=float, default=-1.0,
                        help="Probability to mask source sequence in fine-tuning")
    parser.add_argument('--target_mask_prob', type=float, default=0.5,
                        help="Probability to mask target sequence in fine-tuning")
    parser.add_argument('--num_max_mask_token', type=int, default=0,
                        help="The number of the max masked tokens in target sequence")
    parser.add_argument('--mask_way', type=str, default='v2',
                        help="Fine-tuning method (v0: position shift, v1: masked LM, v2: pseudo-masking)")
    parser.add_argument("--lmdb_cache", action='store_true',
                        help="Use LMDB to cache training features")
    parser.add_argument("--lmdb_dtype", type=str, default='h', 
                        help="Data type for cached data type for LMDB")
    parser.add_argument
    args = parser.parse_args()
    return args


def prepare(args):
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    os.makedirs(args.output_dir, exist_ok=True)
    json.dump(args.__dict__, open(os.path.join(
        args.output_dir, 'train_opt.json'), 'w'), sort_keys=True, indent=2)

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device

    # Setup logging
    logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt='%m/%d/%Y %H:%M:%S',
                        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
                   args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)

    # Set seed
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    logger.info("Training/evaluation parameters %s", args)

    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex
            apex.amp.register_half_function(torch, 'einsum')
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")


def get_model_and_tokenizer(args):
    config_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    model_config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        cache_dir=args.cache_dir if args.cache_dir else None)
    config = BertForSeq2SeqConfig.from_exist_config(
        config=model_config, label_smoothing=args.label_smoothing, 
        fix_word_embedding=args.fix_word_embedding, 
        max_position_embeddings=args.max_source_seq_length + args.max_target_seq_length)

    logger.info("Model config for seq2seq: %s", str(config))

    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None)

    model_class = \
        BertForSequenceToSequenceWithPseudoMask if args.mask_way == 'v2' \
            else BertForSequenceToSequenceUniLMV1

    logger.info("Construct model %s" % model_class.MODEL_NAME)

    model = model_class.from_pretrained(
        args.model_name_or_path, config=config, model_type=args.model_type,
        reuse_position_embedding=True,
        cache_dir=args.cache_dir if args.cache_dir else None)

    return model, tokenizer


def main():
    args = get_args()
    prepare(args)

    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()
        # Make sure only the first process in distributed training will download model & vocab
    # Load pretrained model and tokenizer
    model, tokenizer = get_model_and_tokenizer(args)

    if args.local_rank == 0:
        torch.distributed.barrier()
        # Make sure only the first process in distributed training will download model & vocab

    if args.cached_train_features_file is None:
        if not args.lmdb_cache:
            args.cached_train_features_file = os.path.join(args.output_dir, "cached_features_for_training.pt")
        else:
            args.cached_train_features_file = os.path.join(args.output_dir, "cached_features_for_training_lmdb")
    training_features = utils.load_and_cache_examples(
        example_file=args.train_file, tokenizer=tokenizer, local_rank=args.local_rank,
        cached_features_file=args.cached_train_features_file, shuffle=True, 
        lmdb_cache=args.lmdb_cache, lmdb_dtype=args.lmdb_dtype, 
    )

    train(args, training_features, model, tokenizer)


if __name__ == "__main__":
    main()