Tzktz's picture
Upload 7664 files
6fc683c verified

A newer version of the Gradio SDK is available: 5.35.0

Upgrade

ADE20k Semantic segmentation with BEiT

Getting started

  1. Install the mmsegmentation library and some required packages.
pip install mmcv-full==1.3.0 mmsegmentation==0.11.0
pip install scipy timm==0.3.2
  1. Install apex for mixed-precision training
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
  1. Follow the guide in mmseg to prepare the ADE20k dataset.

Fine-tuning

Command format:

tools/dist_train.sh <CONFIG_PATH> <NUM_GPUS>  --work-dir <SAVE_PATH> --seed 0  --deterministic --options model.pretrained=<IMAGENET_CHECKPOINT_PATH/URL>

For example, using a BEiT-base backbone with UperNet:

bash tools/dist_train.sh \
    configs/beit/upernet/upernet_beit_base_12_640_slide_160k_ade20k_pt2ft.py 8 \
    --work-dir /path/to/save --seed 0  --deterministic \
    --options model.pretrained=https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22k.pth?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D

More config files can be found at configs/beit/upernet.

Evaluation

Command format:

tools/dist_test.sh  <CONFIG_PATH> <CHECKPOINT_PATH> <NUM_GPUS> --eval mIoU

For example, evaluate a BEiT-base backbone with UperNet:

bash tools/dist_test.sh configs/beit/upernet/upernet_beit_base_12_640_slide_160k_ade20k_pt2ft.py \ 
    https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_640_pt22k_ft22ktoade20k.pth?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D  4 --eval mIoU

Expected results:

+--------+-------+-------+-------+
| Scope  | mIoU  | mAcc  | aAcc  |
+--------+-------+-------+-------+
| global | 53.61 | 64.82 | 84.62 |
+--------+-------+-------+-------+

Multi-scale + flip (\*_ms.py)

bash tools/dist_test.sh configs/beit/upernet/upernet_beit_base_12_640_slide_160k_ade20k_ms.py \
    https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_640_pt22k_ft22ktoade20k.pth?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D  4 --eval mIoU

Expected results:

+--------+-------+-------+------+
| Scope  | mIoU  | mAcc  | aAcc |
+--------+-------+-------+------+
| global | 54.26 | 65.28 | 84.9 |
+--------+-------+-------+------+

Acknowledgment

This code is built using the mmsegmentation library, Timm library, the Swin repository, XCiT and the SETR repository.