File size: 8,823 Bytes
d8a44ef
 
85ac990
 
d8a44ef
 
85ac990
 
 
 
d8a44ef
 
 
 
85ac990
 
 
 
 
 
d8a44ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85ac990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b42b884
 
85ac990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c1f9dd
 
d8a44ef
85ac990
 
d8a44ef
85ac990
 
 
 
0993d5e
 
85ac990
 
 
 
 
 
2c1f9dd
85ac990
0993d5e
85ac990
0993d5e
85ac990
0993d5e
85ac990
 
 
cdf1241
 
 
2c1f9dd
 
 
cdf1241
 
 
 
 
 
 
 
 
 
 
 
 
d8a44ef
cdf1241
2c1f9dd
b0ade1a
2c1f9dd
 
 
 
 
b0ade1a
18cc46a
b0ade1a
2c1f9dd
 
 
b0ade1a
 
 
 
 
 
 
2c1f9dd
b0ade1a
2c1f9dd
cdf1241
2c1f9dd
cdf1241
 
b0ade1a
 
 
 
cdf1241
2c1f9dd
cdf1241
447f97e
d8a44ef
447f97e
cdf1241
 
 
 
183f8cd
18cc46a
 
 
 
d8a44ef
b0ade1a
18cc46a
cdf1241
 
 
85ac990
 
 
 
 
 
 
b0ade1a
 
 
 
 
 
85ac990
 
 
b0ade1a
85ac990
 
 
8b10b79
 
baf0dee
 
8b10b79
 
5a2db0a
 
 
 
 
d8a44ef
5a2db0a
2c1f9dd
b0ade1a
2c1f9dd
 
 
 
 
b0ade1a
8471e78
b0ade1a
 
 
 
 
 
 
2c1f9dd
 
85ac990
 
 
 
 
 
 
5a2db0a
18cc46a
5a2db0a
 
 
18cc46a
afaacd1
18cc46a
afaacd1
18cc46a
85ac990
 
b0ade1a
85ac990
baf0dee
5a2db0a
b0ade1a
 
 
85ac990
18cc46a
afaacd1
85ac990
 
d8a44ef
3854a1f
85ac990
b0ade1a
18cc46a
85ac990
 
d8a44ef
447f97e
204391c
3854a1f
 
 
b0ade1a
3854a1f
8b10b79
d8a44ef
b0ade1a
3854a1f
 
d8a44ef
204391c
85ac990
 
5a2db0a
3854a1f
5a2db0a
 
85ac990
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
"""CLI using Click."""

from __future__ import annotations

import os
import sys
from pathlib import Path
from typing import Literal

import click
import joblib
import pandas as pd

from app.constants import TOKENIZER_CACHE_DIR

__all__ = ["cli_wrapper"]

DONE_STR = click.style("DONE", fg="green")


def _load_dataset(
    dataset: str,
    batch_size: int = 512,
    n_jobs: int = 4,
    force_cache: bool = False,
) -> tuple[pd.Series, pd.Series]:
    """Helper function to load and tokenize the dataset or use cached data if available.

    Args:
        dataset: Name of the dataset
        batch_size: Batch size for tokenization
        n_jobs: Number of parallel jobs
        force_cache: Whether to force using the cached data

    Returns:
        Tokenized text data and label data
    """
    from app.data import load_data, tokenize
    from app.utils import deserialize, serialize

    token_cache_path = TOKENIZER_CACHE_DIR / f"{dataset}_tokenized.pkl"
    label_cache_path = TOKENIZER_CACHE_DIR / f"{dataset}_labels.pkl"
    use_cached_data = False

    if token_cache_path.exists() and label_cache_path.exists():
        use_cached_data = force_cache or click.confirm(
            f"Found existing tokenized data for '{dataset}'. Use it?",
            default=True,
        )

    if use_cached_data:
        click.echo("Loading cached data... ", nl=False)
        token_data = pd.Series(deserialize(token_cache_path))
        label_data = joblib.load(label_cache_path)
        click.echo(DONE_STR)
    else:
        click.echo("Loading dataset... ", nl=False)
        text_data, label_data = load_data(dataset)
        click.echo(DONE_STR)

        click.echo("Tokenizing data... ")
        token_data = tokenize(text_data, batch_size=batch_size, n_jobs=n_jobs, show_progress=True)
        serialize(token_data, token_cache_path, show_progress=True)
        joblib.dump(label_data, label_cache_path, compress=3)

    click.echo("Dataset vocabulary size: ", nl=False)
    vocab = token_data.explode().value_counts()
    click.secho(str(len(vocab)), fg="blue")

    return token_data, label_data


@click.group()
def cli() -> None: ...


@cli.command()
@click.option(
    "--model",
    "model_path",
    required=True,
    help="Path to the trained model",
    type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True, path_type=Path),
)
@click.option(
    "--share/--no-share",
    default=False,
    help="Whether to create a shareable link",
)
def gui(model_path: Path, share: bool) -> None:
    """Launch the Gradio GUI"""
    from app.gui import launch_gui

    os.environ["MODEL_PATH"] = model_path.as_posix()
    launch_gui(share)


@cli.command()
@click.option(
    "--model",
    "model_path",
    required=True,
    help="Path to the trained model",
    type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True, path_type=Path),
)
@click.argument("text", nargs=-1)
def predict(model_path: Path, text: list[str]) -> None:
    """Perform sentiment analysis on the provided text.

    Note: Piped input takes precedence over the text argument
    """
    from app.model import infer_model

    # Combine the text arguments into a single string
    text = " ".join(text).strip()
    if not sys.stdin.isatty():
        # If there is piped input, read it
        piped_text = sys.stdin.read().strip()
        text = piped_text or text

    if not text:
        msg = "No text provided"
        raise click.UsageError(msg)

    click.echo("Loading model... ", nl=False)
    model = joblib.load(model_path)
    click.echo(DONE_STR)

    click.echo("Performing sentiment analysis... ", nl=False)
    prediction = infer_model(model, [text])[0]
    if prediction == 0:
        sentiment = click.style("NEGATIVE", fg="red")
    elif prediction == 1:
        sentiment = click.style("POSITIVE", fg="green")
    else:
        sentiment = click.style("NEUTRAL", fg="yellow")
    click.echo(sentiment)


@cli.command()
@click.option(
    "--dataset",
    default="test",
    help="Dataset to evaluate the model on",
    type=click.Choice(["test", "sentiment140", "amazonreviews", "imdb50k"]),
)
@click.option(
    "--model",
    "model_path",
    required=True,
    help="Path to the trained model",
    type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True, path_type=Path),
)
@click.option(
    "--cv",
    default=5,
    help="Number of cross-validation folds",
    show_default=True,
    type=click.IntRange(2, 50),
)
@click.option(
    "--token-batch-size",
    default=512,
    help="Size of the batches used in tokenization",
    show_default=True,
)
@click.option(
    "--token-jobs",
    default=4,
    help="Number of parallel jobs to run for tokenization",
    show_default=True,
)
@click.option(
    "--eval-jobs",
    default=1,
    help="Number of parallel jobs to run for evaluation",
    show_default=True,
)
@click.option(
    "--force-cache",
    is_flag=True,
    help="Always use the cached tokenized data (if available)",
)
def evaluate(
    dataset: Literal["test", "sentiment140", "amazonreviews", "imdb50k"],
    model_path: Path,
    cv: int,
    token_batch_size: int,
    token_jobs: int,
    eval_jobs: int,
    force_cache: bool,
) -> None:
    """Evaluate the model on the the specified dataset"""
    from app.model import evaluate_model

    token_data, label_data = _load_dataset(dataset, token_batch_size, token_jobs, force_cache)

    click.echo("Loading model... ", nl=False)
    model = joblib.load(model_path)
    click.echo(DONE_STR)

    click.echo("Evaluating model... ")
    acc_mean, acc_std = evaluate_model(
        model,
        token_data,
        label_data,
        cv=cv,
        n_jobs=eval_jobs,
    )
    click.secho(f"{acc_mean:.2%} ± {acc_std:.2%}", fg="blue")


@cli.command()
@click.option(
    "--dataset",
    required=True,
    help="Dataset to train the model on",
    type=click.Choice(["sentiment140", "amazonreviews", "imdb50k"]),
)
@click.option(
    "--vectorizer",
    default="tfidf",
    help="Vectorizer to use",
    type=click.Choice(["tfidf", "count", "hashing"]),
)
@click.option(
    "--max-features",
    default=20000,
    help="Maximum number of features (should be greater than 2^15 when using hashing vectorizer)",
    show_default=True,
    type=click.IntRange(1, None),
)
@click.option(
    "--min-df",
    default=5,
    help="Minimum document frequency for the features (ignored for hashing)",
    show_default=True,
)
@click.option(
    "--cv",
    default=5,
    help="Number of cross-validation folds",
    show_default=True,
    type=click.IntRange(2, 50),
)
@click.option(
    "--token-batch-size",
    default=512,
    help="Size of the batches used in tokenization",
    show_default=True,
)
@click.option(
    "--token-jobs",
    default=4,
    help="Number of parallel jobs to run for tokenization",
    show_default=True,
)
@click.option(
    "--train-jobs",
    default=1,
    help="Number of parallel jobs to run for training",
    show_default=True,
)
@click.option(
    "--seed",
    default=42,
    help="Random seed (-1 for random seed)",
    show_default=True,
    type=click.IntRange(-1, None),
)
@click.option(
    "--overwrite",
    is_flag=True,
    help="Overwrite the model file if it already exists",
)
@click.option(
    "--force-cache",
    is_flag=True,
    help="Always use the cached tokenized data (if available)",
)
def train(
    dataset: Literal["sentiment140", "amazonreviews", "imdb50k"],
    vectorizer: Literal["tfidf", "count", "hashing"],
    max_features: int,
    min_df: int,
    cv: int,
    token_batch_size: int,
    token_jobs: int,
    train_jobs: int,
    seed: int,
    overwrite: bool,
    force_cache: bool,
) -> None:
    """Train the model on the provided dataset"""
    from app.constants import MODEL_DIR
    from app.model import train_model

    model_path = MODEL_DIR / f"{dataset}_{vectorizer}_ft{max_features}.pkl"
    if model_path.exists() and not overwrite:
        click.confirm(f"Model file '{model_path}' already exists. Overwrite?", abort=True)

    token_data, label_data = _load_dataset(dataset, token_batch_size, token_jobs, force_cache)

    click.echo("Training model... ")
    model, accuracy = train_model(
        token_data,
        label_data,
        vectorizer=vectorizer,
        max_features=max_features,
        min_df=min_df,
        cv=cv,
        n_jobs=train_jobs,
        seed=seed,
    )

    click.echo("Model accuracy: ", nl=False)
    click.secho(f"{accuracy:.2%}", fg="blue")

    click.echo("Model saved to: ", nl=False)
    joblib.dump(model, model_path, compress=3)
    click.secho(str(model_path), fg="blue")


def cli_wrapper() -> None:
    cli(max_content_width=120)


if __name__ == "__main__":
    cli_wrapper()