Spaces:
Running
Running
Create model in train_model
Browse files- app/cli.py +10 -4
- app/model.py +31 -40
app/cli.py
CHANGED
@@ -230,7 +230,7 @@ def train(
|
|
230 |
|
231 |
from app.constants import CACHE_DIR, MODELS_DIR
|
232 |
from app.data import load_data, tokenize
|
233 |
-
from app.model import
|
234 |
|
235 |
model_path = MODELS_DIR / f"{dataset}_tfidf_ft-{max_features}.pkl"
|
236 |
if model_path.exists() and not force:
|
@@ -258,13 +258,19 @@ def train(
|
|
258 |
del text_data
|
259 |
|
260 |
click.echo("Training model... ")
|
261 |
-
model =
|
262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
click.echo("Model accuracy: ", nl=False)
|
264 |
click.secho(f"{accuracy:.2%}", fg="blue")
|
265 |
|
266 |
click.echo("Model saved to: ", nl=False)
|
267 |
-
joblib.dump(
|
268 |
click.secho(str(model_path), fg="blue")
|
269 |
|
270 |
|
|
|
230 |
|
231 |
from app.constants import CACHE_DIR, MODELS_DIR
|
232 |
from app.data import load_data, tokenize
|
233 |
+
from app.model import train_model
|
234 |
|
235 |
model_path = MODELS_DIR / f"{dataset}_tfidf_ft-{max_features}.pkl"
|
236 |
if model_path.exists() and not force:
|
|
|
258 |
del text_data
|
259 |
|
260 |
click.echo("Training model... ")
|
261 |
+
model, accuracy = train_model(
|
262 |
+
token_data,
|
263 |
+
label_data,
|
264 |
+
max_features=max_features,
|
265 |
+
folds=cv,
|
266 |
+
seed=seed,
|
267 |
+
verbose=verbose,
|
268 |
+
)
|
269 |
click.echo("Model accuracy: ", nl=False)
|
270 |
click.secho(f"{accuracy:.2%}", fg="blue")
|
271 |
|
272 |
click.echo("Model saved to: ", nl=False)
|
273 |
+
joblib.dump(model, model_path, compress=3)
|
274 |
click.secho(str(model_path), fg="blue")
|
275 |
|
276 |
|
app/model.py
CHANGED
@@ -16,7 +16,7 @@ from app.data import tokenize
|
|
16 |
if TYPE_CHECKING:
|
17 |
from sklearn.base import BaseEstimator
|
18 |
|
19 |
-
__all__ = ["
|
20 |
|
21 |
|
22 |
def _identity(x: list[str]) -> list[str]:
|
@@ -31,46 +31,10 @@ def _identity(x: list[str]) -> list[str]:
|
|
31 |
return x
|
32 |
|
33 |
|
34 |
-
def create_model(
|
35 |
-
max_features: int,
|
36 |
-
seed: int | None = None,
|
37 |
-
verbose: bool = False,
|
38 |
-
) -> Pipeline:
|
39 |
-
"""Create a sentiment analysis model.
|
40 |
-
|
41 |
-
Args:
|
42 |
-
max_features: Maximum number of features
|
43 |
-
seed: Random seed (None for random seed)
|
44 |
-
verbose: Whether to output additional information
|
45 |
-
|
46 |
-
Returns:
|
47 |
-
Untrained model
|
48 |
-
"""
|
49 |
-
return Pipeline(
|
50 |
-
[
|
51 |
-
(
|
52 |
-
"vectorizer",
|
53 |
-
TfidfVectorizer(
|
54 |
-
max_features=max_features,
|
55 |
-
ngram_range=(1, 2),
|
56 |
-
# disable text processing
|
57 |
-
tokenizer=_identity,
|
58 |
-
preprocessor=_identity,
|
59 |
-
lowercase=False,
|
60 |
-
token_pattern=None,
|
61 |
-
),
|
62 |
-
),
|
63 |
-
("classifier", LogisticRegression(max_iter=1000, random_state=seed)),
|
64 |
-
],
|
65 |
-
memory=Memory(CACHE_DIR, verbose=0),
|
66 |
-
verbose=verbose,
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
def train_model(
|
71 |
-
model: BaseEstimator,
|
72 |
token_data: list[str],
|
73 |
label_data: list[int],
|
|
|
74 |
folds: int = 5,
|
75 |
seed: int = 42,
|
76 |
verbose: bool = False,
|
@@ -81,6 +45,7 @@ def train_model(
|
|
81 |
model: Untrained model
|
82 |
token_data: Tokenized text data
|
83 |
label_data: Label data
|
|
|
84 |
folds: Number of cross-validation folds
|
85 |
seed: Random seed (None for random seed)
|
86 |
verbose: Whether to output additional information
|
@@ -100,6 +65,32 @@ def train_model(
|
|
100 |
"classifier__solver": ["liblinear", "saga"],
|
101 |
}
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
search = RandomizedSearchCV(
|
104 |
model,
|
105 |
param_distributions,
|
@@ -111,9 +102,9 @@ def train_model(
|
|
111 |
verbose=verbose,
|
112 |
)
|
113 |
|
114 |
-
os.environ["PYTHONWARNINGS"] = "ignore"
|
115 |
search.fit(text_train, label_train)
|
116 |
-
del os.environ["PYTHONWARNINGS"]
|
117 |
|
118 |
best_model = search.best_estimator_
|
119 |
return best_model, best_model.score(text_test, label_test)
|
|
|
16 |
if TYPE_CHECKING:
|
17 |
from sklearn.base import BaseEstimator
|
18 |
|
19 |
+
__all__ = ["train_model", "evaluate_model", "infer_model"]
|
20 |
|
21 |
|
22 |
def _identity(x: list[str]) -> list[str]:
|
|
|
31 |
return x
|
32 |
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def train_model(
|
|
|
35 |
token_data: list[str],
|
36 |
label_data: list[int],
|
37 |
+
max_features: int,
|
38 |
folds: int = 5,
|
39 |
seed: int = 42,
|
40 |
verbose: bool = False,
|
|
|
45 |
model: Untrained model
|
46 |
token_data: Tokenized text data
|
47 |
label_data: Label data
|
48 |
+
max_features: Maximum number of features
|
49 |
folds: Number of cross-validation folds
|
50 |
seed: Random seed (None for random seed)
|
51 |
verbose: Whether to output additional information
|
|
|
65 |
"classifier__solver": ["liblinear", "saga"],
|
66 |
}
|
67 |
|
68 |
+
model = Pipeline(
|
69 |
+
[
|
70 |
+
(
|
71 |
+
"vectorizer",
|
72 |
+
TfidfVectorizer(
|
73 |
+
max_features=max_features,
|
74 |
+
ngram_range=(1, 2),
|
75 |
+
# disable text processing
|
76 |
+
tokenizer=_identity,
|
77 |
+
preprocessor=_identity,
|
78 |
+
lowercase=False,
|
79 |
+
token_pattern=None,
|
80 |
+
),
|
81 |
+
),
|
82 |
+
(
|
83 |
+
"classifier",
|
84 |
+
LogisticRegression(
|
85 |
+
max_iter=1000,
|
86 |
+
random_state=None if seed == -1 else seed,
|
87 |
+
),
|
88 |
+
),
|
89 |
+
],
|
90 |
+
memory=Memory(CACHE_DIR, verbose=0),
|
91 |
+
verbose=verbose,
|
92 |
+
)
|
93 |
+
|
94 |
search = RandomizedSearchCV(
|
95 |
model,
|
96 |
param_distributions,
|
|
|
102 |
verbose=verbose,
|
103 |
)
|
104 |
|
105 |
+
# os.environ["PYTHONWARNINGS"] = "ignore"
|
106 |
search.fit(text_train, label_train)
|
107 |
+
# del os.environ["PYTHONWARNINGS"]
|
108 |
|
109 |
best_model = search.best_estimator_
|
110 |
return best_model, best_model.score(text_test, label_test)
|