Spaces:
Sleeping
Sleeping
File size: 2,301 Bytes
fc9d5c1 a807e9f fc9d5c1 a807e9f fc9d5c1 aa9eeb1 1244f78 aa9eeb1 1244f78 aa9eeb1 fc9d5c1 aa9eeb1 fc9d5c1 a807e9f 22ecb97 acb65af a807e9f acb65af fc9d5c1 a807e9f 22ecb97 a807e9f 22ecb97 c1d5b13 a807e9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import gradio as gr
import pandas as pd
from neuralprophet import NeuralProphet, set_log_level
import warnings
set_log_level("ERROR")
warnings.filterwarnings("ignore", category=UserWarning)
url = "VN Index Historical Data.csv"
df = pd.read_csv(url)
df = df[["Date", "Price"]]
df = df.rename(columns={"Date": "ds", "Price": "y"})
df.fillna(method='ffill', inplace=True)
df.dropna(inplace=True)
m = NeuralProphet(n_forecasts= 3,
n_lags=12,
changepoints_range=1, num_hidden_layers=6, daily_seasonality= False, weekly_seasonality = False, yearly_seasonality = True, ar_reg=True,
n_changepoints=150, trend_reg_threshold=True, d_hidden=9, global_normalization=True, global_time_normalization=True, seasonality_reg=1, unknown_data_normalization=True,
seasonality_mode="multiplicative", drop_missing=True,
learning_rate=0.1
)
m.fit(df, freq='M')
future = m.make_future_dataframe(df, periods=30, n_historic_predictions=True)
forecast = m.predict(future)
def predict_vn_index(option=None):
fig1 = m.plot(forecast)
fig1_path = "forecast_plot1.png"
fig1.savefig(fig1_path)
# Add code to generate the second image (fig2)
fig2 = m.plot_latest_forecast(forecast) # Replace this line with code to generate the second image
fig2_path = "forecast_plot2.png"
fig2.savefig(fig2_path)
description = "The predictions are conducted by a Deep Learning AI algorithm, and data augmentation is performed by the AI Consultant team. Data is updated after 5 PM GMT+7 on trading days."
disclaimer = "Please consider this as a reference only; the company holds no responsibility for your investment status."
return fig1_path, fig2_path, description, disclaimer
if __name__ == "__main__":
dropdown = gr.inputs.Dropdown(["VNIndex"], label="Choose an option", default="VNIndex")
outputs = [
gr.outputs.Image(type="filepath", label="The VN Index price history and forecast"),
gr.outputs.Image(type="filepath", label="Forecasting the VN Index for the next 90 days"),
gr.outputs.Textbox(label="Description"),
gr.outputs.Textbox(label="Disclaimer")
]
interface = gr.Interface(fn=predict_vn_index, inputs=dropdown, outputs=outputs, title="Forecasting the VN Index for the next 90 days")
interface.launch()
|