Spaces:
Running
Running
Joseph Pollack
commited on
adds correct model card info
Browse files- .gitignore +2 -1
- interface.py +10 -0
- scripts/__pycache__/generate_model_card.cpython-313.pyc +0 -0
- scripts/push_to_huggingface.py +47 -3
- tests/test_generate_model_card.py +143 -0
- tests/test_push_model_card.py +218 -0
.gitignore
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
datasets/
|
|
|
|
1 |
+
datasets/
|
2 |
+
tmp_hf_push/
|
interface.py
CHANGED
@@ -515,6 +515,16 @@ def start_voxtral_training(
|
|
515 |
"model",
|
516 |
str(output_dir),
|
517 |
full_repo_name,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
518 |
]
|
519 |
all_logs.append(f"📤 Pushing model to Hugging Face Hub: {full_repo_name}")
|
520 |
push_code = collect_logs_with_code(run_command_stream(push_args, env))
|
|
|
515 |
"model",
|
516 |
str(output_dir),
|
517 |
full_repo_name,
|
518 |
+
"--author-name", "Voxtral Trainer",
|
519 |
+
"--model-description", "Fine-tuned Voxtral ASR model",
|
520 |
+
"--model-name", base_model,
|
521 |
+
"--trainer-type", ("SFTTrainer"),
|
522 |
+
"--training-config-type", ("Custom Configuration"),
|
523 |
+
"--batch-size", str(int(batch_size) if isinstance(batch_size, (int, float)) else batch_size),
|
524 |
+
"--gradient-accumulation-steps", str(int(grad_accum) if isinstance(grad_accum, (int, float)) else grad_accum),
|
525 |
+
"--learning-rate", str(learning_rate),
|
526 |
+
"--max-epochs", str(epochs),
|
527 |
+
"--trackio-url", env.get("TRACKIO_URL", "N/A"),
|
528 |
]
|
529 |
all_logs.append(f"📤 Pushing model to Hugging Face Hub: {full_repo_name}")
|
530 |
push_code = collect_logs_with_code(run_command_stream(push_args, env))
|
scripts/__pycache__/generate_model_card.cpython-313.pyc
ADDED
Binary file (11.3 kB). View file
|
|
scripts/push_to_huggingface.py
CHANGED
@@ -47,7 +47,18 @@ class HuggingFacePusher:
|
|
47 |
author_name: Optional[str] = None,
|
48 |
model_description: Optional[str] = None,
|
49 |
model_name: Optional[str] = None,
|
50 |
-
dataset_name: Optional[str] = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
):
|
52 |
self.model_path = Path(model_path)
|
53 |
# Original user input (may be just the repo name without username)
|
@@ -60,6 +71,17 @@ class HuggingFacePusher:
|
|
60 |
# Model card generation details
|
61 |
self.model_name = model_name
|
62 |
self.dataset_name = dataset_name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
# Initialize HF API
|
65 |
if HF_AVAILABLE:
|
@@ -278,7 +300,7 @@ class HuggingFacePusher:
|
|
278 |
"repo_name": self.repo_id,
|
279 |
"model_name": self.repo_id.split('/')[-1],
|
280 |
"experiment_name": self.experiment_name or "model_push",
|
281 |
-
"dataset_repo": self.dataset_repo,
|
282 |
"author_name": self.author_name or "Model Author",
|
283 |
"model_description": self.model_description or "A fine-tuned version of SmolLM3-3B for improved text generation capabilities.",
|
284 |
"training_config_type": self.training_config_type or "Custom Configuration",
|
@@ -286,6 +308,7 @@ class HuggingFacePusher:
|
|
286 |
"dataset_name": self.dataset_name or "Custom Dataset",
|
287 |
"trainer_type": self.trainer_type or "SFTTrainer",
|
288 |
"batch_size": str(self.batch_size) if self.batch_size else "8",
|
|
|
289 |
"learning_rate": str(self.learning_rate) if self.learning_rate else "5e-6",
|
290 |
"max_epochs": str(self.max_epochs) if self.max_epochs else "3",
|
291 |
"max_seq_length": str(self.max_seq_length) if self.max_seq_length else "2048",
|
@@ -895,6 +918,17 @@ def parse_args():
|
|
895 |
model_parser.add_argument('--model-description', type=str, default=None, help='Model description for model card')
|
896 |
model_parser.add_argument('--model-name', type=str, default=None, help='Base model name')
|
897 |
model_parser.add_argument('--dataset-name', type=str, default=None, help='Dataset name')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
898 |
|
899 |
# Dataset push subcommand
|
900 |
dataset_parser = subparsers.add_parser('dataset', help='Push dataset to Hugging Face Hub')
|
@@ -933,7 +967,17 @@ def main():
|
|
933 |
author_name=args.author_name,
|
934 |
model_description=args.model_description,
|
935 |
model_name=args.model_name,
|
936 |
-
dataset_name=args.dataset_name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
937 |
)
|
938 |
|
939 |
# Push model
|
|
|
47 |
author_name: Optional[str] = None,
|
48 |
model_description: Optional[str] = None,
|
49 |
model_name: Optional[str] = None,
|
50 |
+
dataset_name: Optional[str] = None,
|
51 |
+
# Optional metadata for model card generation
|
52 |
+
experiment_name: Optional[str] = None,
|
53 |
+
dataset_repo: Optional[str] = None,
|
54 |
+
training_config_type: Optional[str] = None,
|
55 |
+
trainer_type: Optional[str] = None,
|
56 |
+
batch_size: Optional[str] = None,
|
57 |
+
gradient_accumulation_steps: Optional[str] = None,
|
58 |
+
learning_rate: Optional[str] = None,
|
59 |
+
max_epochs: Optional[str] = None,
|
60 |
+
max_seq_length: Optional[str] = None,
|
61 |
+
trackio_url: Optional[str] = None,
|
62 |
):
|
63 |
self.model_path = Path(model_path)
|
64 |
# Original user input (may be just the repo name without username)
|
|
|
71 |
# Model card generation details
|
72 |
self.model_name = model_name
|
73 |
self.dataset_name = dataset_name
|
74 |
+
# Optional metadata (ensure attributes always exist to avoid AttributeError)
|
75 |
+
self.experiment_name = experiment_name
|
76 |
+
self.dataset_repo = dataset_repo
|
77 |
+
self.training_config_type = training_config_type
|
78 |
+
self.trainer_type = trainer_type
|
79 |
+
self.batch_size = batch_size
|
80 |
+
self.gradient_accumulation_steps = gradient_accumulation_steps
|
81 |
+
self.learning_rate = learning_rate
|
82 |
+
self.max_epochs = max_epochs
|
83 |
+
self.max_seq_length = max_seq_length
|
84 |
+
self.trackio_url = trackio_url
|
85 |
|
86 |
# Initialize HF API
|
87 |
if HF_AVAILABLE:
|
|
|
300 |
"repo_name": self.repo_id,
|
301 |
"model_name": self.repo_id.split('/')[-1],
|
302 |
"experiment_name": self.experiment_name or "model_push",
|
303 |
+
"dataset_repo": self.dataset_repo or "",
|
304 |
"author_name": self.author_name or "Model Author",
|
305 |
"model_description": self.model_description or "A fine-tuned version of SmolLM3-3B for improved text generation capabilities.",
|
306 |
"training_config_type": self.training_config_type or "Custom Configuration",
|
|
|
308 |
"dataset_name": self.dataset_name or "Custom Dataset",
|
309 |
"trainer_type": self.trainer_type or "SFTTrainer",
|
310 |
"batch_size": str(self.batch_size) if self.batch_size else "8",
|
311 |
+
"gradient_accumulation_steps": str(self.gradient_accumulation_steps) if self.gradient_accumulation_steps else variables.get("gradient_accumulation_steps", "16"),
|
312 |
"learning_rate": str(self.learning_rate) if self.learning_rate else "5e-6",
|
313 |
"max_epochs": str(self.max_epochs) if self.max_epochs else "3",
|
314 |
"max_seq_length": str(self.max_seq_length) if self.max_seq_length else "2048",
|
|
|
918 |
model_parser.add_argument('--model-description', type=str, default=None, help='Model description for model card')
|
919 |
model_parser.add_argument('--model-name', type=str, default=None, help='Base model name')
|
920 |
model_parser.add_argument('--dataset-name', type=str, default=None, help='Dataset name')
|
921 |
+
# Optional model card metadata
|
922 |
+
model_parser.add_argument('--experiment-name', type=str, default=None, help='Experiment name for model card')
|
923 |
+
model_parser.add_argument('--dataset-repo', type=str, default=None, help='Dataset repo for model card')
|
924 |
+
model_parser.add_argument('--training-config-type', type=str, default=None, help='Training config type for model card')
|
925 |
+
model_parser.add_argument('--trainer-type', type=str, default=None, help='Trainer type for model card')
|
926 |
+
model_parser.add_argument('--batch-size', type=str, default=None, help='Batch size for model card')
|
927 |
+
model_parser.add_argument('--gradient-accumulation-steps', type=str, default=None, help='Grad accum steps for model card')
|
928 |
+
model_parser.add_argument('--learning-rate', type=str, default=None, help='Learning rate for model card')
|
929 |
+
model_parser.add_argument('--max-epochs', type=str, default=None, help='Max epochs for model card')
|
930 |
+
model_parser.add_argument('--max-seq-length', type=str, default=None, help='Max seq length for model card')
|
931 |
+
model_parser.add_argument('--trackio-url', type=str, default=None, help='Trackio URL for model card')
|
932 |
|
933 |
# Dataset push subcommand
|
934 |
dataset_parser = subparsers.add_parser('dataset', help='Push dataset to Hugging Face Hub')
|
|
|
967 |
author_name=args.author_name,
|
968 |
model_description=args.model_description,
|
969 |
model_name=args.model_name,
|
970 |
+
dataset_name=args.dataset_name,
|
971 |
+
experiment_name=args.experiment_name,
|
972 |
+
dataset_repo=args.dataset_repo,
|
973 |
+
training_config_type=args.training_config_type,
|
974 |
+
trainer_type=args.trainer_type,
|
975 |
+
batch_size=args.batch_size,
|
976 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
977 |
+
learning_rate=args.learning_rate,
|
978 |
+
max_epochs=args.max_epochs,
|
979 |
+
max_seq_length=args.max_seq_length,
|
980 |
+
trackio_url=args.trackio_url,
|
981 |
)
|
982 |
|
983 |
# Push model
|
tests/test_generate_model_card.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Tests for scripts/generate_model_card.py using the real template in templates/model_card.md.
|
4 |
+
|
5 |
+
These tests verify:
|
6 |
+
- Conditional processing for quantized_models
|
7 |
+
- Variable replacement for common fields
|
8 |
+
- File writing via save_model_card
|
9 |
+
"""
|
10 |
+
|
11 |
+
import sys
|
12 |
+
from pathlib import Path
|
13 |
+
|
14 |
+
|
15 |
+
def _repo_root() -> Path:
|
16 |
+
return Path(__file__).resolve().parents[1]
|
17 |
+
|
18 |
+
|
19 |
+
def _add_scripts_to_path() -> None:
|
20 |
+
scripts_dir = _repo_root() / "scripts"
|
21 |
+
if str(scripts_dir) not in sys.path:
|
22 |
+
sys.path.insert(0, str(scripts_dir))
|
23 |
+
|
24 |
+
|
25 |
+
def test_model_card_generator_conditionals_truthy(tmp_path):
|
26 |
+
_add_scripts_to_path()
|
27 |
+
from generate_model_card import ModelCardGenerator
|
28 |
+
|
29 |
+
template_path = _repo_root() / "templates" / "model_card.md"
|
30 |
+
generator = ModelCardGenerator(str(template_path))
|
31 |
+
|
32 |
+
variables = {
|
33 |
+
"model_name": "My Fine-tuned Model",
|
34 |
+
"model_description": "A test description.",
|
35 |
+
"repo_name": "user/repo",
|
36 |
+
"base_model": "HuggingFaceTB/SmolLM3-3B",
|
37 |
+
"dataset_name": "OpenHermes-FR",
|
38 |
+
"training_config_type": "Custom",
|
39 |
+
"trainer_type": "SFTTrainer",
|
40 |
+
"batch_size": "8",
|
41 |
+
"gradient_accumulation_steps": "16",
|
42 |
+
"learning_rate": "5e-6",
|
43 |
+
"max_epochs": "3",
|
44 |
+
"max_seq_length": "2048",
|
45 |
+
"hardware_info": "CPU",
|
46 |
+
"experiment_name": "exp-123",
|
47 |
+
"trackio_url": "https://trackio.space/exp",
|
48 |
+
"dataset_repo": "tonic/trackio-experiments",
|
49 |
+
"author_name": "Unit Tester",
|
50 |
+
"quantized_models": True,
|
51 |
+
}
|
52 |
+
|
53 |
+
content = generator.generate_model_card(variables)
|
54 |
+
|
55 |
+
# Conditional: when True, the quantized tag should appear
|
56 |
+
assert "- quantized" in content
|
57 |
+
|
58 |
+
# Common variables replaced in multiple locations
|
59 |
+
assert "base_model: HuggingFaceTB/SmolLM3-3B" in content
|
60 |
+
assert "trainer_type: SFTTrainer" in content
|
61 |
+
assert 'from_pretrained("user/repo")' in content
|
62 |
+
assert "Hardware\": \"CPU\"" not in content # ensure no escaped quotes left
|
63 |
+
assert "hardware: \"CPU\"" in content
|
64 |
+
|
65 |
+
# Save to file and verify
|
66 |
+
output_path = tmp_path / "README_test.md"
|
67 |
+
assert generator.save_model_card(content, str(output_path)) is True
|
68 |
+
assert output_path.exists()
|
69 |
+
assert output_path.read_text(encoding="utf-8") == content
|
70 |
+
|
71 |
+
|
72 |
+
def test_model_card_generator_conditionals_falsey(tmp_path):
|
73 |
+
_add_scripts_to_path()
|
74 |
+
from generate_model_card import ModelCardGenerator
|
75 |
+
|
76 |
+
template_path = _repo_root() / "templates" / "model_card.md"
|
77 |
+
generator = ModelCardGenerator(str(template_path))
|
78 |
+
|
79 |
+
variables = {
|
80 |
+
"model_name": "My Model",
|
81 |
+
"model_description": "A test description.",
|
82 |
+
"repo_name": "user/repo",
|
83 |
+
"base_model": "HuggingFaceTB/SmolLM3-3B",
|
84 |
+
"dataset_name": "OpenHermes-FR",
|
85 |
+
"training_config_type": "Custom",
|
86 |
+
"trainer_type": "SFTTrainer",
|
87 |
+
"batch_size": "8",
|
88 |
+
"learning_rate": "5e-6",
|
89 |
+
"max_epochs": "3",
|
90 |
+
"max_seq_length": "2048",
|
91 |
+
"hardware_info": "CPU",
|
92 |
+
"quantized_models": False,
|
93 |
+
}
|
94 |
+
|
95 |
+
content = generator.generate_model_card(variables)
|
96 |
+
|
97 |
+
# Conditional: quantized tag should be absent
|
98 |
+
assert "- quantized" not in content
|
99 |
+
|
100 |
+
# The if/else block is removed by current implementation when False
|
101 |
+
assert "{{#if quantized_models}}" not in content
|
102 |
+
assert "{{/if}}" not in content
|
103 |
+
|
104 |
+
# Variable replacement still occurs elsewhere
|
105 |
+
assert "base_model: HuggingFaceTB/SmolLM3-3B" in content
|
106 |
+
assert 'from_pretrained("user/repo")' in content
|
107 |
+
|
108 |
+
# Save to file
|
109 |
+
output_path = tmp_path / "README_no_quant.md"
|
110 |
+
assert generator.save_model_card(content, str(output_path)) is True
|
111 |
+
assert output_path.exists()
|
112 |
+
|
113 |
+
|
114 |
+
def test_model_card_generator_variable_replacement(tmp_path):
|
115 |
+
_add_scripts_to_path()
|
116 |
+
from generate_model_card import ModelCardGenerator
|
117 |
+
|
118 |
+
template_path = _repo_root() / "templates" / "model_card.md"
|
119 |
+
generator = ModelCardGenerator(str(template_path))
|
120 |
+
|
121 |
+
base_model = "custom/base-model"
|
122 |
+
repo_name = "custom/repo-name"
|
123 |
+
variables = {
|
124 |
+
"model_name": "Var Test Model",
|
125 |
+
"model_description": "Testing variable replacement.",
|
126 |
+
"repo_name": repo_name,
|
127 |
+
"base_model": base_model,
|
128 |
+
"dataset_name": "dataset-x",
|
129 |
+
"trainer_type": "SFTTrainer",
|
130 |
+
"batch_size": "4",
|
131 |
+
"gradient_accumulation_steps": "1",
|
132 |
+
"max_seq_length": "1024",
|
133 |
+
"hardware_info": "CPU",
|
134 |
+
"quantized_models": False,
|
135 |
+
}
|
136 |
+
|
137 |
+
content = generator.generate_model_card(variables)
|
138 |
+
|
139 |
+
assert f"base_model: {base_model}" in content
|
140 |
+
assert f'from_pretrained("{repo_name}")' in content
|
141 |
+
assert "trainer_type: SFTTrainer" in content
|
142 |
+
|
143 |
+
|
tests/test_push_model_card.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Tests for scripts/push_to_huggingface.py focusing on model card creation/upload.
|
4 |
+
|
5 |
+
We mock Hugging Face Hub interactions and create dummy model folders to verify:
|
6 |
+
- Repo id resolution via whoami
|
7 |
+
- Repository creation call
|
8 |
+
- README.md upload with expected content (fallback simple card path)
|
9 |
+
- Uploading of model files from the directory
|
10 |
+
"""
|
11 |
+
|
12 |
+
import sys
|
13 |
+
import types
|
14 |
+
from pathlib import Path
|
15 |
+
|
16 |
+
|
17 |
+
def _repo_root() -> Path:
|
18 |
+
return Path(__file__).resolve().parents[1]
|
19 |
+
|
20 |
+
|
21 |
+
def _add_scripts_to_path() -> None:
|
22 |
+
scripts_dir = _repo_root() / "scripts"
|
23 |
+
if str(scripts_dir) not in sys.path:
|
24 |
+
sys.path.insert(0, str(scripts_dir))
|
25 |
+
|
26 |
+
|
27 |
+
def _make_full_model_dir(base: Path) -> Path:
|
28 |
+
model_dir = base / "full_model"
|
29 |
+
model_dir.mkdir(parents=True, exist_ok=True)
|
30 |
+
(model_dir / "config.json").write_text("{}", encoding="utf-8")
|
31 |
+
# Create an empty weight file to satisfy validation
|
32 |
+
(model_dir / "model.safetensors").write_bytes(b"")
|
33 |
+
return model_dir
|
34 |
+
|
35 |
+
|
36 |
+
def _make_lora_model_dir(base: Path) -> Path:
|
37 |
+
model_dir = base / "lora_model"
|
38 |
+
model_dir.mkdir(parents=True, exist_ok=True)
|
39 |
+
(model_dir / "adapter_config.json").write_text("{}", encoding="utf-8")
|
40 |
+
(model_dir / "adapter_model.bin").write_bytes(b"\x00")
|
41 |
+
return model_dir
|
42 |
+
|
43 |
+
|
44 |
+
def test_push_model_card_full_model(monkeypatch, tmp_path):
|
45 |
+
_add_scripts_to_path()
|
46 |
+
import push_to_huggingface as mod
|
47 |
+
|
48 |
+
# Ensure module thinks HF is available and patch API + functions
|
49 |
+
monkeypatch.setattr(mod, "HF_AVAILABLE", True, raising=False)
|
50 |
+
|
51 |
+
create_repo_calls = []
|
52 |
+
upload_file_calls = []
|
53 |
+
|
54 |
+
class DummyHfApi:
|
55 |
+
def __init__(self, token=None):
|
56 |
+
self.token = token
|
57 |
+
|
58 |
+
def whoami(self):
|
59 |
+
return {"name": "testuser"}
|
60 |
+
|
61 |
+
def fake_create_repo(*, repo_id, token=None, private=False, exist_ok=False, repo_type=None):
|
62 |
+
create_repo_calls.append({
|
63 |
+
"repo_id": repo_id,
|
64 |
+
"token": token,
|
65 |
+
"private": private,
|
66 |
+
"exist_ok": exist_ok,
|
67 |
+
"repo_type": repo_type,
|
68 |
+
})
|
69 |
+
|
70 |
+
def fake_upload_file(*, path_or_fileobj, path_in_repo, repo_id, token, repo_type=None):
|
71 |
+
path = Path(path_or_fileobj)
|
72 |
+
content = None
|
73 |
+
if path.exists() and path.is_file():
|
74 |
+
try:
|
75 |
+
content = path.read_text(encoding="utf-8")
|
76 |
+
except Exception:
|
77 |
+
content = None
|
78 |
+
upload_file_calls.append({
|
79 |
+
"path_in_repo": path_in_repo,
|
80 |
+
"repo_id": repo_id,
|
81 |
+
"token": token,
|
82 |
+
"repo_type": repo_type,
|
83 |
+
"content": content,
|
84 |
+
"local_path": str(path),
|
85 |
+
})
|
86 |
+
|
87 |
+
monkeypatch.setattr(mod, "HfApi", DummyHfApi, raising=False)
|
88 |
+
monkeypatch.setattr(mod, "create_repo", fake_create_repo, raising=False)
|
89 |
+
monkeypatch.setattr(mod, "upload_file", fake_upload_file, raising=False)
|
90 |
+
|
91 |
+
# Prepare dummy full model directory
|
92 |
+
model_dir = _make_full_model_dir(tmp_path)
|
93 |
+
|
94 |
+
pusher = mod.HuggingFacePusher(
|
95 |
+
model_path=str(model_dir),
|
96 |
+
repo_name="my-repo",
|
97 |
+
token="fake-token",
|
98 |
+
private=True,
|
99 |
+
author_name="Tester",
|
100 |
+
model_description="Desc",
|
101 |
+
model_name="BaseModel",
|
102 |
+
dataset_name="DatasetX",
|
103 |
+
)
|
104 |
+
|
105 |
+
# Execute push (this should use fallback simple model card)
|
106 |
+
ok = pusher.push_model(
|
107 |
+
training_config={"param": 1},
|
108 |
+
results={"train_loss": 0.1, "eval_loss": 0.2, "perplexity": 9.9},
|
109 |
+
)
|
110 |
+
assert ok is True
|
111 |
+
|
112 |
+
# Repo creation was called with resolved user prefix
|
113 |
+
assert any(c["repo_id"] == "testuser/my-repo" for c in create_repo_calls)
|
114 |
+
|
115 |
+
# README upload occurred and contains either generator or fallback content (full model)
|
116 |
+
readme_calls = [c for c in upload_file_calls if c["path_in_repo"] == "README.md"]
|
117 |
+
assert readme_calls, "README.md was not uploaded"
|
118 |
+
readme_content = readme_calls[-1]["content"] or ""
|
119 |
+
assert (
|
120 |
+
"fine-tuned Voxtral ASR model" in readme_content
|
121 |
+
or "SmolLM3" in readme_content
|
122 |
+
or "Model Details" in readme_content
|
123 |
+
)
|
124 |
+
assert "DatasetX" in readme_content or "Training Configuration" in readme_content
|
125 |
+
|
126 |
+
# Model files were uploaded (config and weights)
|
127 |
+
uploaded_paths = {c["path_in_repo"] for c in upload_file_calls}
|
128 |
+
assert "config.json" in uploaded_paths
|
129 |
+
assert "model.safetensors" in uploaded_paths
|
130 |
+
|
131 |
+
|
132 |
+
def test_push_model_card_lora_model_fallback(monkeypatch, tmp_path):
|
133 |
+
_add_scripts_to_path()
|
134 |
+
import push_to_huggingface as mod
|
135 |
+
|
136 |
+
# Ensure module thinks HF is available and patch API + functions
|
137 |
+
monkeypatch.setattr(mod, "HF_AVAILABLE", True, raising=False)
|
138 |
+
|
139 |
+
upload_file_calls = []
|
140 |
+
|
141 |
+
class DummyHfApi:
|
142 |
+
def __init__(self, token=None):
|
143 |
+
self.token = token
|
144 |
+
|
145 |
+
def whoami(self):
|
146 |
+
return {"username": "anotheruser"}
|
147 |
+
|
148 |
+
def fake_create_repo(*, repo_id, token=None, private=False, exist_ok=False, repo_type=None):
|
149 |
+
return None
|
150 |
+
|
151 |
+
def fake_upload_file(*, path_or_fileobj, path_in_repo, repo_id, token, repo_type=None):
|
152 |
+
path = Path(path_or_fileobj)
|
153 |
+
content = None
|
154 |
+
if path.exists() and path.is_file():
|
155 |
+
try:
|
156 |
+
content = path.read_text(encoding="utf-8")
|
157 |
+
except Exception:
|
158 |
+
content = None
|
159 |
+
upload_file_calls.append({
|
160 |
+
"path_in_repo": path_in_repo,
|
161 |
+
"repo_id": repo_id,
|
162 |
+
"content": content,
|
163 |
+
})
|
164 |
+
|
165 |
+
monkeypatch.setattr(mod, "HfApi", DummyHfApi, raising=False)
|
166 |
+
monkeypatch.setattr(mod, "create_repo", fake_create_repo, raising=False)
|
167 |
+
monkeypatch.setattr(mod, "upload_file", fake_upload_file, raising=False)
|
168 |
+
|
169 |
+
# Insert a dummy generate_model_card module that raises in generate to force fallback
|
170 |
+
dummy_mod = types.ModuleType("generate_model_card")
|
171 |
+
|
172 |
+
class RaisingGen:
|
173 |
+
def __init__(self, *args, **kwargs):
|
174 |
+
pass
|
175 |
+
|
176 |
+
def generate_model_card(self, variables):
|
177 |
+
raise RuntimeError("force fallback")
|
178 |
+
|
179 |
+
def default_vars():
|
180 |
+
return {}
|
181 |
+
|
182 |
+
dummy_mod.ModelCardGenerator = RaisingGen
|
183 |
+
dummy_mod.create_default_variables = default_vars
|
184 |
+
sys.modules["generate_model_card"] = dummy_mod
|
185 |
+
|
186 |
+
# Prepare dummy lora model directory
|
187 |
+
model_dir = _make_lora_model_dir(tmp_path)
|
188 |
+
|
189 |
+
pusher = mod.HuggingFacePusher(
|
190 |
+
model_path=str(model_dir),
|
191 |
+
repo_name="my-lora-repo",
|
192 |
+
token="fake-token",
|
193 |
+
private=False,
|
194 |
+
author_name="Tester",
|
195 |
+
model_description="Desc",
|
196 |
+
model_name="BaseModel",
|
197 |
+
dataset_name="DatasetY",
|
198 |
+
)
|
199 |
+
|
200 |
+
ok = pusher.push_model(training_config={}, results={})
|
201 |
+
assert ok is True
|
202 |
+
|
203 |
+
# README upload occurred and contains either generator or fallback content (LoRA)
|
204 |
+
readme_calls = [c for c in upload_file_calls if c["path_in_repo"] == "README.md"]
|
205 |
+
assert readme_calls, "README.md was not uploaded"
|
206 |
+
readme_content = readme_calls[-1]["content"] or ""
|
207 |
+
assert (
|
208 |
+
"LoRA adapter for Voxtral ASR" in readme_content
|
209 |
+
or "SmolLM3" in readme_content
|
210 |
+
or "Model Details" in readme_content
|
211 |
+
)
|
212 |
+
assert "DatasetY" in readme_content or "Training Configuration" in readme_content
|
213 |
+
|
214 |
+
# LoRA files uploaded
|
215 |
+
uploaded_paths = {Path(c.get("local_path", "")).name for c in upload_file_calls if c.get("local_path")}
|
216 |
+
assert any(name.startswith("adapter_") for name in uploaded_paths)
|
217 |
+
|
218 |
+
|