Spaces:
Running
Running
Joseph Pollack
commited on
adds functioning demo space for adapter config and adds model readme
Browse files
requirements.txt
CHANGED
@@ -1,15 +1,19 @@
|
|
1 |
-
|
2 |
-
|
3 |
torchvision
|
4 |
-
torchaudio
|
|
|
|
|
|
|
5 |
datasets
|
6 |
peft
|
7 |
transformers
|
|
|
8 |
gradio
|
9 |
gradio[mcp]
|
10 |
trackio
|
11 |
huggingface_hub
|
|
|
12 |
soundfile
|
13 |
librosa
|
14 |
mistral-common
|
15 |
-
torchcodec
|
|
|
1 |
+
# PyTorch 2.8 ecosystem with CUDA support (required for TorchCodec 0.7)
|
2 |
+
torch==2.8.0
|
3 |
torchvision
|
4 |
+
torchaudio==2.8.0
|
5 |
+
triton
|
6 |
+
torchcodec==0.7
|
7 |
+
# Core ML libraries
|
8 |
datasets
|
9 |
peft
|
10 |
transformers
|
11 |
+
# UI and deployment
|
12 |
gradio
|
13 |
gradio[mcp]
|
14 |
trackio
|
15 |
huggingface_hub
|
16 |
+
# Audio processing
|
17 |
soundfile
|
18 |
librosa
|
19 |
mistral-common
|
|
templates/spaces/demo_voxtral/app.py
CHANGED
@@ -2,41 +2,77 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from transformers import AutoProcessor
|
|
|
|
|
|
|
|
|
5 |
try:
|
6 |
from transformers import VoxtralForConditionalGeneration as VoxtralModelClass
|
7 |
except Exception:
|
8 |
-
# Fallback for older transformers versions
|
9 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
HF_MODEL_ID = os.getenv("HF_MODEL_ID", "mistralai/Voxtral-Mini-3B-2507")
|
|
|
12 |
MODEL_NAME = os.getenv("MODEL_NAME", HF_MODEL_ID.split("/")[-1])
|
13 |
HF_USERNAME = os.getenv("HF_USERNAME", "")
|
14 |
MODEL_SUBFOLDER = os.getenv("MODEL_SUBFOLDER", "").strip()
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
# Use float32 on CPU; bfloat16 on CUDA if available
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
# Simple language options (with Auto detection)
|
42 |
LANGUAGES = {
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from transformers import AutoProcessor
|
5 |
+
try:
|
6 |
+
from transformers import AutoConfig
|
7 |
+
except Exception:
|
8 |
+
AutoConfig = None
|
9 |
try:
|
10 |
from transformers import VoxtralForConditionalGeneration as VoxtralModelClass
|
11 |
except Exception:
|
12 |
+
# Fallback for older transformers versions: prefer causal LM over seq2seq
|
13 |
+
from transformers import AutoModelForCausalLM as VoxtralModelClass
|
14 |
+
try:
|
15 |
+
from peft import PeftModel, PeftConfig
|
16 |
+
except Exception:
|
17 |
+
PeftModel = None
|
18 |
+
PeftConfig = None
|
19 |
+
|
20 |
|
21 |
HF_MODEL_ID = os.getenv("HF_MODEL_ID", "mistralai/Voxtral-Mini-3B-2507")
|
22 |
+
BASE_MODEL_ID = os.getenv("BASE_MODEL_ID", "mistralai/Voxtral-Mini-3B-2507")
|
23 |
MODEL_NAME = os.getenv("MODEL_NAME", HF_MODEL_ID.split("/")[-1])
|
24 |
HF_USERNAME = os.getenv("HF_USERNAME", "")
|
25 |
MODEL_SUBFOLDER = os.getenv("MODEL_SUBFOLDER", "").strip()
|
26 |
|
27 |
+
def _load_processor():
|
28 |
+
try:
|
29 |
+
return AutoProcessor.from_pretrained(HF_MODEL_ID)
|
30 |
+
except Exception:
|
31 |
+
# Fallback: some repos may store processor files inside the subfolder
|
32 |
+
if MODEL_SUBFOLDER:
|
33 |
+
try:
|
34 |
+
return AutoProcessor.from_pretrained(HF_MODEL_ID, subfolder=MODEL_SUBFOLDER)
|
35 |
+
except Exception:
|
36 |
+
pass
|
37 |
+
# Final fallback to base model's processor
|
38 |
+
return AutoProcessor.from_pretrained(BASE_MODEL_ID)
|
39 |
+
|
40 |
+
processor = _load_processor()
|
41 |
|
42 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
43 |
# Use float32 on CPU; bfloat16 on CUDA if available
|
44 |
+
dtype = torch.bfloat16 if device == "cuda" else torch.float32
|
45 |
+
model_kwargs = {"device_map": "auto"} if device == "cuda" else {}
|
46 |
+
|
47 |
+
def _from_pretrained_with_dtype(model_cls, model_id, **kwargs):
|
48 |
+
# Prefer new `dtype` kw; fall back to legacy `torch_dtype` if needed
|
49 |
+
try:
|
50 |
+
return model_cls.from_pretrained(model_id, dtype=dtype, **kwargs)
|
51 |
+
except TypeError:
|
52 |
+
return model_cls.from_pretrained(model_id, torch_dtype=dtype, **kwargs)
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
model = None
|
57 |
+
base_model = None
|
58 |
+
|
59 |
+
# Prefer PEFT adapter-over-base path first, independent of adapter detection
|
60 |
+
if PeftModel is not None:
|
61 |
+
try:
|
62 |
+
base_model = _from_pretrained_with_dtype(VoxtralModelClass, BASE_MODEL_ID, **model_kwargs)
|
63 |
+
if MODEL_SUBFOLDER:
|
64 |
+
model = PeftModel.from_pretrained(base_model, HF_MODEL_ID, subfolder=MODEL_SUBFOLDER)
|
65 |
+
else:
|
66 |
+
model = PeftModel.from_pretrained(base_model, HF_MODEL_ID)
|
67 |
+
model = model.to(dtype=dtype)
|
68 |
+
except Exception:
|
69 |
+
model = None
|
70 |
+
|
71 |
+
# If PEFT path failed or PEFT is unavailable, fall back to the base model only
|
72 |
+
if model is None:
|
73 |
+
if base_model is None:
|
74 |
+
base_model = _from_pretrained_with_dtype(VoxtralModelClass, BASE_MODEL_ID, **model_kwargs)
|
75 |
+
model = base_model
|
76 |
|
77 |
# Simple language options (with Auto detection)
|
78 |
LANGUAGES = {
|
templates/spaces/demo_voxtral/requirements.txt
CHANGED
@@ -5,3 +5,7 @@ datasets
|
|
5 |
soundfile
|
6 |
librosa
|
7 |
mistral-common
|
|
|
|
|
|
|
|
|
|
5 |
soundfile
|
6 |
librosa
|
7 |
mistral-common
|
8 |
+
peft
|
9 |
+
huggingface_hub
|
10 |
+
accelerate
|
11 |
+
safetensors
|