Spaces:
Running
Running
title: VoxFactory | |
emoji: 🌬️ | |
colorFrom: gray | |
colorTo: red | |
sdk: gradio | |
app_file: interface.py | |
pinned: false | |
license: mit | |
short_description: FinetuneASR Voxtral | |
# Finetune Voxtral for ASR with Transformers 🤗 | |
This repository fine-tunes the Voxtral speech model for automatic speech recognition (ASR) using Hugging Face `transformers` and `datasets`. It includes: | |
- Full and LoRA training scripts | |
- A Gradio interface to collect audio, build a JSONL dataset, fine-tune, push to Hub, and deploy a demo Space | |
- Utilities to push trained models and datasets to the Hugging Face Hub | |
## Installation | |
### 1) Clone the repository | |
```bash | |
git clone https://github.com/Deep-unlearning/Finetune-Voxtral-ASR.git | |
cd Finetune-Voxtral-ASR | |
``` | |
### 2) Create environment and install deps | |
Choose your package manager. | |
<details> | |
<summary>📦 Using UV (recommended)</summary> | |
```bash | |
uv venv .venv --python 3.10 && source .venv/bin/activate | |
uv pip install -r requirements.txt | |
``` | |
</details> | |
<details> | |
<summary>🐍 Using pip</summary> | |
```bash | |
python -m venv .venv --python 3.10 && source .venv/bin/activate | |
pip install --upgrade pip | |
pip install -r requirements.txt | |
``` | |
</details> | |
## Quick start options | |
- Train from CLI: run `scripts/train.py` (full) or `scripts/train_lora.py` (LoRA) | |
- Use the Gradio interface: `python interface.py` to record/upload audio, create dataset JSONL, train, push, and deploy a demo Space | |
## Dataset preparation | |
Training scripts accept either a local JSONL or a small Hub dataset slice. | |
- Local JSONL format expected by collators and push utilities: | |
```python | |
{ | |
"audio_path": "/abs/or/relative/path.wav", | |
"text": "reference transcription" | |
} | |
``` | |
- When loading from the Hub (default fallback): `hf-audio/esb-datasets-test-only-sorted` config `voxpopuli` is used and cast to `Audio(sampling_rate=16000)`. | |
- The custom `VoxtralDataCollator` constructs inputs as: prompt from audio via `VoxtralProcessor.apply_transcription_request(...)` followed by label tokens. Loss is masked over the prompt; only transcription tokens contribute to loss. | |
Minimum columns after loading/mapping: | |
- `audio` cast to `Audio(sampling_rate=16000)` (Hub) or created from `audio_path` (local JSONL) | |
- `text` transcription string | |
## Full fine-tuning (scripts/train.py) | |
Run with either a local JSONL or the default tiny Hub slice: | |
```bash | |
python scripts/train.py \ | |
--model-checkpoint mistralai/Voxtral-Mini-3B-2507 \ | |
--dataset-jsonl datasets/voxtral_user/data.jsonl \ | |
--train-count 100 --eval-count 50 \ | |
--batch-size 2 --grad-accum 4 --learning-rate 5e-5 --epochs 3 \ | |
--output-dir ./voxtral-finetuned | |
``` | |
Key args: | |
- `--dataset-jsonl`: local JSONL with `{audio_path, text}`. If omitted, uses `hf-audio/esb-datasets-test-only-sorted`/`voxpopuli` test slice | |
- `--dataset-name`, `--dataset-config`: override default Hub dataset | |
- `--train-count`, `--eval-count`: small sample sizes for quick runs | |
- `--trackio-space`: HF Space ID for Trackio logging; if omitted and `HF_TOKEN` is set, a space name is auto-derived | |
- `--push-dataset`, `--dataset-repo`: optionally push your local JSONL dataset to the Hub after training | |
Environment for logging and Hub auth: | |
- `HF_TOKEN` or `HUGGINGFACE_HUB_TOKEN`: enables Trackio space naming and Hub uploads | |
Outputs: model and processor saved to `--output-dir`. | |
## LoRA fine-tuning (scripts/train_lora.py) | |
```bash | |
python scripts/train_lora.py \ | |
--model-checkpoint mistralai/Voxtral-Mini-3B-2507 \ | |
--dataset-jsonl datasets/voxtral_user/data.jsonl \ | |
--train-count 100 --eval-count 50 \ | |
--batch-size 2 --grad-accum 4 --learning-rate 5e-5 --epochs 3 \ | |
--lora-r 8 --lora-alpha 32 --lora-dropout 0.0 --freeze-audio-tower \ | |
--output-dir ./voxtral-finetuned-lora | |
``` | |
Additional LoRA args: | |
- `--lora-r`, `--lora-alpha`, `--lora-dropout` | |
- `--freeze-audio-tower`: optionally freeze audio encoder params | |
## End-to-end via Gradio interface (interface.py) | |
Start the UI: | |
```bash | |
python interface.py | |
``` | |
What it does: | |
- Record microphone audio or upload files + transcripts | |
- Saves datasets to `datasets/voxtral_user/` as `data.jsonl` or `recorded_data.jsonl` | |
- Kicks off full or LoRA training with streamed logs | |
- Optionally pushes dataset and model to the Hub | |
- Optionally deploys a Voxtral ASR demo Space | |
Environment variables used by the interface: | |
- `HF_WRITE_TOKEN` or `HF_TOKEN` or `HUGGINGFACE_HUB_TOKEN`: write/read token for Hub actions | |
- `HF_READ_TOKEN`: optional read token | |
- `HF_USERNAME`: fallback username if it cannot be derived from the token | |
Notes: | |
- The interface uses a multilingual phrase source (CohereLabs/AYA via token; otherwise localized fallbacks) | |
- Output models are placed under `outputs/<username_repo>/` | |
## Push models and datasets to Hugging Face (scripts/push_to_huggingface.py) | |
Push a trained model directory (full or LoRA): | |
```bash | |
python scripts/push_to_huggingface.py model ./voxtral-finetuned my-voxtral-asr \ | |
--author-name "Your Name" \ | |
--model-description "Fine-tuned Voxtral ASR" \ | |
--model-name mistralai/Voxtral-Mini-3B-2507 | |
``` | |
Push a dataset JSONL and its audio files: | |
```bash | |
python scripts/push_to_huggingface.py dataset datasets/voxtral_user/data.jsonl my-voxtral-dataset | |
``` | |
Tips: | |
- If you pass bare repo names (no `username/`), the tool will resolve your username from the token or `HF_USERNAME`. | |
- For LoRA outputs, the pusher detects adapter files; for full models it detects `config.json` + weight files and uploads accordingly. | |
## Deploy a demo Space (scripts/deploy_demo_space.py) | |
Deploy a Voxtral demo Space for a pushed model: | |
```bash | |
python scripts/deploy_demo_space.py \ | |
--hf-token $HF_TOKEN \ | |
--hf-username your-hf-username \ | |
--model-id your-hf-username/your-model-repo \ | |
--demo-type voxtral \ | |
--space-name my-voxtral-demo | |
``` | |
What it does: | |
- Creates the Space (or use `--skip-creation` to only upload) | |
- Uploads template files from `templates/spaces/demo_voxtral/` | |
- Sets space variables and secrets (e.g., `HF_TOKEN`, `HF_MODEL_ID`) via API | |
- Waits for the Space to build and tests accessibility | |
The Space app loads either a full model or a base+LoRA adapter with `peft`, and uses `AutoProcessor` to build Voxtral transcription requests. | |
## GPU and versions | |
- Torch 2.8.0 + torchaudio 2.8.0 and `torchcodec==0.7` are specified; CUDA-capable GPU is recommended for training | |
- The code prefers `bfloat16` on CUDA, `float32` on CPU | |
## Troubleshooting | |
- No token found: | |
- Set `HF_TOKEN` (or `HUGGINGFACE_HUB_TOKEN`) in your environment for Hub operations and Trackio naming | |
- Invalid token or username resolution failed: | |
- Provide fully-qualified repo IDs like `username/repo` or set `HF_USERNAME` | |
- Demo Space rate limits / propagation delays: | |
- The deploy script retries uploads and may need extra time for the Space to build | |
- Collator errors: | |
- Ensure your JSONL rows include valid `audio_path` files and `text` strings | |
- Windows shell hints: | |
- Use `set HF_TOKEN=your_token` in CMD/PowerShell before running scripts | |
## License | |
MIT |