File size: 9,601 Bytes
643a0c1
 
be9aa9f
 
 
643a0c1
be9aa9f
643a0c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be9aa9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
643a0c1
 
 
 
be9aa9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
643a0c1
 
be9aa9f
643a0c1
 
be9aa9f
 
 
 
643a0c1
 
 
 
 
 
 
 
 
be9aa9f
 
 
 
643a0c1
be9aa9f
 
 
 
 
 
 
 
 
643a0c1
be9aa9f
643a0c1
 
be9aa9f
 
 
 
 
643a0c1
be9aa9f
 
 
643a0c1
 
 
 
 
 
be9aa9f
643a0c1
 
 
 
 
 
 
be9aa9f
643a0c1
 
 
 
 
 
be9aa9f
643a0c1
 
 
be9aa9f
643a0c1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#!/usr/bin/env python3

import argparse
import json
from pathlib import Path
import torch
from datasets import load_dataset, Audio, Dataset
from transformers import (
    VoxtralForConditionalGeneration,
    VoxtralProcessor,
    Trainer,
    TrainingArguments,
)
from peft import LoraConfig, get_peft_model


class VoxtralDataCollator:
    """Data collator for Voxtral STT training - processes audio and text."""
    
    def __init__(self, processor, model_id):
        self.processor = processor
        self.model_id = model_id
        self.pad_id = processor.tokenizer.pad_token_id

    def __call__(self, features):
        """
        Each feature should have:
          - "audio": raw audio (whatever your processor expects)
          - "text":  transcription string
        """
        texts  = [f["text"] for f in features]
        audios = [f["audio"]["array"] for f in features]

        # 1) Build the PROMPT part: [AUDIO]…[AUDIO] <transcribe>
        prompt = self.processor.apply_transcription_request(  # (same method you used)
            language="en",
            model_id=self.model_id if hasattr(self, "model_id") else None,
            audio=audios,
            format=["WAV"] * len(audios),
            return_tensors="pt",
        )
        # prompt["input_ids"]: shape [B, L_prompt]
        # keep any extra fields (e.g., audio features) to pass through to the model
        passthrough = {k: v for k, v in prompt.items()
                       if k not in ("input_ids", "attention_mask")}

        prompt_ids = prompt["input_ids"]           # [B, Lp]
        prompt_attn = prompt["attention_mask"]     # [B, Lp]
        B = prompt_ids.size(0)

        tok = self.processor.tokenizer
        # 2) Tokenize transcriptions WITHOUT padding; we'll pad after concatenation
        text_tok = tok(
            texts,
            add_special_tokens=False,
            padding=False,
            truncation=True,
            max_length=256,
            return_tensors=None,
        )
        text_ids_list = text_tok["input_ids"]

        # 3) Concatenate: input_ids = [PROMPT] + [TEXT]
        input_ids, attention_mask, labels = [], [], []
        for i in range(B):
            p_ids = prompt_ids[i].tolist()
            p_att = prompt_attn[i].tolist()
            t_ids = text_ids_list[i]

            ids  = p_ids + t_ids
            attn = p_att + [1] * len(t_ids)
            # labels: mask prompt tokens, learn only on text tokens
            lab  = [-100] * len(p_ids) + t_ids

            input_ids.append(ids)
            attention_mask.append(attn)
            labels.append(lab)

        # 4) Pad to max length in batch
        pad_id = tok.pad_token_id if tok.pad_token_id is not None else tok.eos_token_id
        max_len = max(len(x) for x in input_ids)

        def pad_to(seq, fill, L):
            return seq + [fill] * (L - len(seq))

        input_ids      = [pad_to(x, pad_id, max_len) for x in input_ids]
        attention_mask = [pad_to(x, 0,      max_len) for x in attention_mask]
        labels         = [pad_to(x, -100,   max_len) for x in labels]

        batch = {
            "input_ids": torch.tensor(input_ids, dtype=torch.long),
            "attention_mask": torch.tensor(attention_mask, dtype=torch.long),
            "labels": torch.tensor(labels, dtype=torch.long),
        }
        # 5) Include processor outputs needed by the model (e.g., audio features)
        for k, v in passthrough.items():
            batch[k] = v

        return batch

def _load_jsonl_dataset(jsonl_path: str) -> Dataset:
    """Load local JSONL with fields {audio_path, text} into a Dataset with audio column."""
    records = []
    jsonl_file = Path(jsonl_path)
    if not jsonl_file.exists():
        raise FileNotFoundError(f"Dataset jsonl not found: {jsonl_path}")
    with open(jsonl_file, "r", encoding="utf-8") as f:
        for line in f:
            if not line.strip():
                continue
            obj = json.loads(line)
            audio_path = obj.get("audio_path") or obj.get("audio")
            text = obj.get("text")
            if not audio_path or text is None:
                continue
            records.append({"audio": audio_path, "text": text})
    if not records:
        raise ValueError("No valid records found in JSONL. Expect keys: audio_path, text")
    ds = Dataset.from_list(records)
    # Cast the audio column from file paths and resample to 16kHz
    ds = ds.cast_column("audio", Audio(sampling_rate=16000))
    return ds


def load_and_prepare_dataset(dataset_jsonl: str | None, dataset_name: str | None, dataset_config: str | None,
                             train_count: int, eval_count: int):
    """Load and prepare dataset for training (JSONL or HF hub)."""
    if dataset_jsonl:
        print(f"Loading local JSONL dataset: {dataset_jsonl}")
        ds = _load_jsonl_dataset(dataset_jsonl)
    else:
        ds_name = dataset_name or "hf-audio/esb-datasets-test-only-sorted"
        ds_cfg = dataset_config or "voxpopuli"
        print(f"Loading dataset: {ds_name}/{ds_cfg}")
        ds = load_dataset(ds_name, ds_cfg, split="test")
        ds = ds.cast_column("audio", Audio(sampling_rate=16000))

    total = len(ds)
    train_end = min(train_count, total)
    eval_end = min(train_end + eval_count, total)
    train_dataset = ds.select(range(train_end))
    eval_dataset = ds.select(range(train_end, eval_end)) if eval_end > train_end else None
    return train_dataset, eval_dataset


def main():
    parser = argparse.ArgumentParser(description="LoRA fine-tune Voxtral for ASR")
    parser.add_argument("--dataset-jsonl", type=str, default=None, help="Path to local JSONL with {audio_path, text}")
    parser.add_argument("--dataset-name", type=str, default=None, help="HF dataset repo (if not using JSONL)")
    parser.add_argument("--dataset-config", type=str, default=None, help="HF dataset config/subset")
    parser.add_argument("--train-count", type=int, default=100, help="Number of training samples to use")
    parser.add_argument("--eval-count", type=int, default=50, help="Number of eval samples to use")
    parser.add_argument("--model-checkpoint", type=str, default="mistralai/Voxtral-Mini-3B-2507")
    parser.add_argument("--output-dir", type=str, default="./voxtral-finetuned")
    parser.add_argument("--batch-size", type=int, default=2)
    parser.add_argument("--eval-batch-size", type=int, default=4)
    parser.add_argument("--grad-accum", type=int, default=4)
    parser.add_argument("--learning-rate", type=float, default=5e-5)
    parser.add_argument("--epochs", type=float, default=3)
    parser.add_argument("--logging-steps", type=int, default=10)
    parser.add_argument("--save-steps", type=int, default=50)
    parser.add_argument("--lora-r", type=int, default=8)
    parser.add_argument("--lora-alpha", type=int, default=32)
    parser.add_argument("--lora-dropout", type=float, default=0.0)
    parser.add_argument("--freeze-audio-tower", action="store_true", help="Freeze audio encoder parameters")
    args = parser.parse_args()

    model_checkpoint = args.model_checkpoint
    output_dir = args.output_dir

    torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {torch_device}")

    print("Loading processor and model...")
    processor = VoxtralProcessor.from_pretrained(model_checkpoint)
    lora_cfg = LoraConfig(
        r=args.lora_r,
        lora_alpha=args.lora_alpha,
        lora_dropout=args.lora_dropout,
        bias="none",
        target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
        task_type="SEQ_2_SEQ_LM",
    )
    model = VoxtralForConditionalGeneration.from_pretrained(
        model_checkpoint,
        torch_dtype=torch.bfloat16,
        device_map="auto"
    )
    if args.freeze_audio_tower:
        for param in model.audio_tower.parameters():
            param.requires_grad = False
    model = get_peft_model(model, lora_cfg)
    model.print_trainable_parameters()

    train_dataset, eval_dataset = load_and_prepare_dataset(
        dataset_jsonl=args.dataset_jsonl,
        dataset_name=args.dataset_name,
        dataset_config=args.dataset_config,
        train_count=args.train_count,
        eval_count=args.eval_count,
    )

    data_collator = VoxtralDataCollator(processor, model_checkpoint)

    training_args = TrainingArguments(
        output_dir=output_dir,
        per_device_train_batch_size=args.batch_size,
        per_device_eval_batch_size=args.eval_batch_size,
        gradient_accumulation_steps=args.grad_accum,
        learning_rate=args.learning_rate,
        num_train_epochs=args.epochs,
        bf16=True,
        logging_steps=args.logging_issues if hasattr(args, 'logging_issues') else args.logging_steps,
        eval_steps=args.save_steps if eval_dataset else None,
        save_steps=args.save_steps,
        eval_strategy="steps" if eval_dataset else "no",
        save_strategy="steps",
        report_to="none",
        remove_unused_columns=False,
        dataloader_num_workers=1,
    )

    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        data_collator=data_collator,
    )

    print("Starting training...")
    trainer.train()

    print(f"Saving model to {output_dir}")
    trainer.save_model()
    processor.save_pretrained(output_dir)

    if eval_dataset:
        results = trainer.evaluate()
        print(f"Final evaluation results: {results}")

    print("Training completed successfully!")

if __name__ == "__main__":
    main()