Spaces:
Running
Running
Commit
·
643a0c1
1
Parent(s):
97ae18a
add lora training script'
Browse files- train_lora.py +201 -0
train_lora.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from datasets import load_dataset, Audio
|
5 |
+
from transformers import (
|
6 |
+
VoxtralForConditionalGeneration,
|
7 |
+
VoxtralProcessor,
|
8 |
+
Trainer,
|
9 |
+
TrainingArguments,
|
10 |
+
)
|
11 |
+
import jiwer
|
12 |
+
from peft import LoraConfig, get_peft_model
|
13 |
+
|
14 |
+
|
15 |
+
class VoxtralDataCollator:
|
16 |
+
"""Data collator for Voxtral STT training - processes audio and text."""
|
17 |
+
|
18 |
+
def __init__(self, processor, model_id):
|
19 |
+
self.processor = processor
|
20 |
+
self.model_id = model_id
|
21 |
+
self.pad_id = processor.tokenizer.pad_token_id
|
22 |
+
|
23 |
+
def __call__(self, features):
|
24 |
+
"""
|
25 |
+
Each feature should have:
|
26 |
+
- "audio": raw audio (whatever your processor expects)
|
27 |
+
- "text": transcription string
|
28 |
+
"""
|
29 |
+
texts = [f["text"] for f in features]
|
30 |
+
audios = [f["audio"]["array"] for f in features]
|
31 |
+
|
32 |
+
# 1) Build the PROMPT part: [AUDIO]…[AUDIO] <transcribe>
|
33 |
+
prompt = self.processor.apply_transcription_request( # (same method you used)
|
34 |
+
language="en",
|
35 |
+
model_id=self.model_id if hasattr(self, "model_id") else None,
|
36 |
+
audio=audios,
|
37 |
+
format=["WAV"] * len(audios),
|
38 |
+
return_tensors="pt",
|
39 |
+
)
|
40 |
+
# prompt["input_ids"]: shape [B, L_prompt]
|
41 |
+
# keep any extra fields (e.g., audio features) to pass through to the model
|
42 |
+
passthrough = {k: v for k, v in prompt.items()
|
43 |
+
if k not in ("input_ids", "attention_mask")}
|
44 |
+
|
45 |
+
prompt_ids = prompt["input_ids"] # [B, Lp]
|
46 |
+
prompt_attn = prompt["attention_mask"] # [B, Lp]
|
47 |
+
B = prompt_ids.size(0)
|
48 |
+
|
49 |
+
tok = self.processor.tokenizer
|
50 |
+
# 2) Tokenize transcriptions WITHOUT padding; we'll pad after concatenation
|
51 |
+
text_tok = tok(
|
52 |
+
texts,
|
53 |
+
add_special_tokens=False,
|
54 |
+
padding=False,
|
55 |
+
truncation=True,
|
56 |
+
max_length=256,
|
57 |
+
return_tensors=None,
|
58 |
+
)
|
59 |
+
text_ids_list = text_tok["input_ids"]
|
60 |
+
|
61 |
+
# 3) Concatenate: input_ids = [PROMPT] + [TEXT]
|
62 |
+
input_ids, attention_mask, labels = [], [], []
|
63 |
+
for i in range(B):
|
64 |
+
p_ids = prompt_ids[i].tolist()
|
65 |
+
p_att = prompt_attn[i].tolist()
|
66 |
+
t_ids = text_ids_list[i]
|
67 |
+
|
68 |
+
ids = p_ids + t_ids
|
69 |
+
attn = p_att + [1] * len(t_ids)
|
70 |
+
# labels: mask prompt tokens, learn only on text tokens
|
71 |
+
lab = [-100] * len(p_ids) + t_ids
|
72 |
+
|
73 |
+
input_ids.append(ids)
|
74 |
+
attention_mask.append(attn)
|
75 |
+
labels.append(lab)
|
76 |
+
|
77 |
+
# 4) Pad to max length in batch
|
78 |
+
pad_id = tok.pad_token_id if tok.pad_token_id is not None else tok.eos_token_id
|
79 |
+
max_len = max(len(x) for x in input_ids)
|
80 |
+
|
81 |
+
def pad_to(seq, fill, L):
|
82 |
+
return seq + [fill] * (L - len(seq))
|
83 |
+
|
84 |
+
input_ids = [pad_to(x, pad_id, max_len) for x in input_ids]
|
85 |
+
attention_mask = [pad_to(x, 0, max_len) for x in attention_mask]
|
86 |
+
labels = [pad_to(x, -100, max_len) for x in labels]
|
87 |
+
|
88 |
+
batch = {
|
89 |
+
"input_ids": torch.tensor(input_ids, dtype=torch.long),
|
90 |
+
"attention_mask": torch.tensor(attention_mask, dtype=torch.long),
|
91 |
+
"labels": torch.tensor(labels, dtype=torch.long),
|
92 |
+
}
|
93 |
+
# 5) Include processor outputs needed by the model (e.g., audio features)
|
94 |
+
for k, v in passthrough.items():
|
95 |
+
batch[k] = v
|
96 |
+
|
97 |
+
return batch
|
98 |
+
|
99 |
+
def load_and_prepare_dataset():
|
100 |
+
"""Load and prepare dataset for training."""
|
101 |
+
dataset_name = "hf-audio/esb-datasets-test-only-sorted"
|
102 |
+
dataset_config = "voxpopuli"
|
103 |
+
|
104 |
+
print(f"Loading dataset: {dataset_name}/{dataset_config}")
|
105 |
+
dataset = load_dataset(dataset_name, dataset_config, split="test")
|
106 |
+
|
107 |
+
# Cast audio to 16kHz (required for Voxtral)
|
108 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
|
109 |
+
|
110 |
+
train_dataset = dataset.select(range(100))
|
111 |
+
eval_dataset = dataset.select(range(100, 150))
|
112 |
+
|
113 |
+
return train_dataset, eval_dataset
|
114 |
+
|
115 |
+
|
116 |
+
def main():
|
117 |
+
# Configuration
|
118 |
+
model_checkpoint = "mistralai/Voxtral-Mini-3B-2507"
|
119 |
+
output_dir = "./voxtral-finetuned"
|
120 |
+
|
121 |
+
# Set device
|
122 |
+
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
123 |
+
print(f"Using device: {torch_device}")
|
124 |
+
|
125 |
+
# Load processor and model
|
126 |
+
print("Loading processor and model...")
|
127 |
+
processor = VoxtralProcessor.from_pretrained(model_checkpoint)
|
128 |
+
# Load model with LoRA configuration
|
129 |
+
config = LoraConfig(
|
130 |
+
r=8, # Rank of LoRA
|
131 |
+
lora_alpha=32,
|
132 |
+
lora_dropout=0.0,
|
133 |
+
bias="none",
|
134 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
135 |
+
task_type="SEQ_2_SEQ_LM",
|
136 |
+
)
|
137 |
+
# print number of parameters in model
|
138 |
+
model = VoxtralForConditionalGeneration.from_pretrained(
|
139 |
+
model_checkpoint,
|
140 |
+
torch_dtype=torch.bfloat16,
|
141 |
+
device_map="auto"
|
142 |
+
)
|
143 |
+
# Freeze the audio encoder model.audio_tower
|
144 |
+
for param in model.audio_tower.parameters():
|
145 |
+
param.requires_grad = False
|
146 |
+
|
147 |
+
model = get_peft_model(model, config)
|
148 |
+
model.print_trainable_parameters()
|
149 |
+
# Load and prepare dataset
|
150 |
+
train_dataset, eval_dataset = load_and_prepare_dataset()
|
151 |
+
|
152 |
+
# Setup data collator
|
153 |
+
data_collator = VoxtralDataCollator(processor, model_checkpoint)
|
154 |
+
|
155 |
+
# Simple training arguments
|
156 |
+
training_args = TrainingArguments(
|
157 |
+
output_dir=output_dir,
|
158 |
+
per_device_train_batch_size=2,
|
159 |
+
per_device_eval_batch_size=4,
|
160 |
+
gradient_accumulation_steps=4,
|
161 |
+
learning_rate=5e-5,
|
162 |
+
num_train_epochs=3,
|
163 |
+
bf16=True,
|
164 |
+
logging_steps=10,
|
165 |
+
eval_steps=50 if eval_dataset else None,
|
166 |
+
save_steps=50,
|
167 |
+
eval_strategy="steps" if eval_dataset else "no",
|
168 |
+
save_strategy="steps",
|
169 |
+
report_to="none",
|
170 |
+
remove_unused_columns=False,
|
171 |
+
dataloader_num_workers=1,
|
172 |
+
)
|
173 |
+
|
174 |
+
# Setup trainer
|
175 |
+
trainer = Trainer(
|
176 |
+
model=model,
|
177 |
+
args=training_args,
|
178 |
+
train_dataset=train_dataset,
|
179 |
+
eval_dataset=eval_dataset,
|
180 |
+
data_collator=data_collator,
|
181 |
+
)
|
182 |
+
|
183 |
+
# Start training
|
184 |
+
print("Starting training...")
|
185 |
+
trainer.train()
|
186 |
+
|
187 |
+
|
188 |
+
# Save model and processor
|
189 |
+
print(f"Saving model to {output_dir}")
|
190 |
+
trainer.save_model()
|
191 |
+
processor.save_pretrained(output_dir)
|
192 |
+
|
193 |
+
# Final evaluation
|
194 |
+
if eval_dataset:
|
195 |
+
results = trainer.evaluate()
|
196 |
+
print(f"Final evaluation results: {results}")
|
197 |
+
|
198 |
+
print("Training completed successfully!")
|
199 |
+
|
200 |
+
if __name__ == "__main__":
|
201 |
+
main()
|