SmolFactory / recover_model.py
Tonic's picture
Fix model recovery and deployment scripts - add safetensors support and Windows compatibility
d0d19b2 verified
raw
history blame
12.9 kB
#!/usr/bin/env python3
"""
Model Recovery and Deployment Script
Recovers trained model from cloud instance, quantizes it, and pushes to Hugging Face Hub
"""
import os
import sys
import json
import argparse
import logging
import subprocess
from pathlib import Path
from typing import Dict, Any, Optional
from datetime import datetime
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
class ModelRecoveryPipeline:
"""Complete model recovery and deployment pipeline"""
def __init__(
self,
model_path: str,
repo_name: str,
hf_token: Optional[str] = None,
private: bool = False,
quantize: bool = True,
quant_types: Optional[list] = None,
trackio_url: Optional[str] = None,
experiment_name: Optional[str] = None,
dataset_repo: Optional[str] = None,
author_name: Optional[str] = None,
model_description: Optional[str] = None
):
self.model_path = Path(model_path)
self.repo_name = repo_name
self.hf_token = hf_token or os.getenv('HF_TOKEN')
self.private = private
self.quantize = quantize
self.quant_types = quant_types or ["int8_weight_only", "int4_weight_only"]
self.trackio_url = trackio_url
self.experiment_name = experiment_name
self.dataset_repo = dataset_repo
self.author_name = author_name
self.model_description = model_description
# Validate HF token
if not self.hf_token:
raise ValueError("HF_TOKEN environment variable or --hf-token argument is required")
logger.info(f"Initialized ModelRecoveryPipeline for {repo_name}")
logger.info(f"Model path: {self.model_path}")
logger.info(f"Quantization enabled: {self.quantize}")
if self.quantize:
logger.info(f"Quantization types: {self.quant_types}")
def validate_model_path(self) -> bool:
"""Validate that the model path contains required files"""
if not self.model_path.exists():
logger.error(f"❌ Model path does not exist: {self.model_path}")
return False
# Check for essential model files
required_files = ['config.json']
# Check for model files (either safetensors or pytorch)
model_files = [
"model.safetensors.index.json", # Safetensors format
"pytorch_model.bin" # PyTorch format
]
missing_files = []
for file in required_files:
if not (self.model_path / file).exists():
missing_files.append(file)
# Check if at least one model file exists
model_file_exists = any((self.model_path / file).exists() for file in model_files)
if not model_file_exists:
missing_files.extend(model_files)
if missing_files:
logger.error(f"❌ Missing required model files: {missing_files}")
return False
logger.info("βœ… Model files validated")
return True
def load_training_config(self) -> Dict[str, Any]:
"""Load training configuration from model directory"""
config_files = [
"training_config.json",
"config_petite_llm_3_fr_1_20250727_152504.json",
"config_petite_llm_3_fr_1_20250727_152524.json"
]
for config_file in config_files:
config_path = self.model_path / config_file
if config_path.exists():
with open(config_path, 'r') as f:
config = json.load(f)
logger.info(f"βœ… Loaded training config from: {config_file}")
return config
# Fallback to basic config
logger.warning("⚠️ No training config found, using default")
return {
"model_name": "HuggingFaceTB/SmolLM3-3B",
"dataset_name": "OpenHermes-FR",
"training_config_type": "Custom Configuration",
"trainer_type": "SFTTrainer",
"per_device_train_batch_size": 8,
"gradient_accumulation_steps": 16,
"learning_rate": "5e-6",
"num_train_epochs": 3,
"max_seq_length": 2048,
"dataset_size": "~80K samples",
"dataset_format": "Chat format"
}
def load_training_results(self) -> Dict[str, Any]:
"""Load training results from model directory"""
results_files = [
"train_results.json",
"training_summary_petite_llm_3_fr_1_20250727_152504.json",
"training_summary_petite_llm_3_fr_1_20250727_152524.json"
]
for results_file in results_files:
results_path = self.model_path / results_file
if results_path.exists():
with open(results_path, 'r') as f:
results = json.load(f)
logger.info(f"βœ… Loaded training results from: {results_file}")
return results
# Fallback to basic results
logger.warning("⚠️ No training results found, using default")
return {
"final_loss": "Unknown",
"total_steps": "Unknown",
"train_loss": "Unknown",
"eval_loss": "Unknown"
}
def push_main_model(self) -> bool:
"""Push the main model to Hugging Face Hub"""
try:
logger.info("πŸš€ Pushing main model to Hugging Face Hub...")
# Import push script
from scripts.model_tonic.push_to_huggingface import HuggingFacePusher
# Load training data
training_config = self.load_training_config()
training_results = self.load_training_results()
# Initialize pusher
pusher = HuggingFacePusher(
model_path=str(self.model_path),
repo_name=self.repo_name,
token=self.hf_token,
private=self.private,
trackio_url=self.trackio_url,
experiment_name=self.experiment_name,
dataset_repo=self.dataset_repo,
hf_token=self.hf_token,
author_name=self.author_name,
model_description=self.model_description
)
# Push model
success = pusher.push_model(training_config, training_results)
if success:
logger.info(f"βœ… Main model pushed successfully to: https://huggingface.co/{self.repo_name}")
return True
else:
logger.error("❌ Failed to push main model")
return False
except Exception as e:
logger.error(f"❌ Error pushing main model: {e}")
return False
def quantize_and_push_models(self) -> bool:
"""Quantize and push models to Hugging Face Hub"""
if not self.quantize:
logger.info("⏭️ Skipping quantization (disabled)")
return True
try:
logger.info("πŸ”„ Starting quantization and push process...")
# Import quantization script
from scripts.model_tonic.quantize_model import ModelQuantizer
success_count = 0
total_count = len(self.quant_types)
for quant_type in self.quant_types:
logger.info(f"πŸ”„ Processing quantization type: {quant_type}")
# Initialize quantizer
quantizer = ModelQuantizer(
model_path=str(self.model_path),
repo_name=self.repo_name,
token=self.hf_token,
private=self.private,
trackio_url=self.trackio_url,
experiment_name=self.experiment_name,
dataset_repo=self.dataset_repo,
hf_token=self.hf_token
)
# Perform quantization and push
success = quantizer.quantize_and_push(
quant_type=quant_type,
device="auto",
group_size=128
)
if success:
logger.info(f"βœ… {quant_type} quantization and push completed")
success_count += 1
else:
logger.error(f"❌ {quant_type} quantization and push failed")
logger.info(f"πŸ“Š Quantization summary: {success_count}/{total_count} successful")
return success_count > 0
except Exception as e:
logger.error(f"❌ Error during quantization: {e}")
return False
def run_complete_pipeline(self) -> bool:
"""Run the complete model recovery and deployment pipeline"""
logger.info("πŸš€ Starting complete model recovery and deployment pipeline")
# Step 1: Validate model path
if not self.validate_model_path():
logger.error("❌ Model validation failed")
return False
# Step 2: Push main model
if not self.push_main_model():
logger.error("❌ Main model push failed")
return False
# Step 3: Quantize and push models
if not self.quantize_and_push_models():
logger.warning("⚠️ Quantization failed, but main model was pushed successfully")
logger.info("πŸŽ‰ Model recovery and deployment pipeline completed!")
logger.info(f"🌐 View your model at: https://huggingface.co/{self.repo_name}")
return True
def parse_args():
"""Parse command line arguments"""
parser = argparse.ArgumentParser(description='Recover and deploy trained model to Hugging Face Hub')
# Required arguments
parser.add_argument('model_path', type=str, help='Path to trained model directory')
parser.add_argument('repo_name', type=str, help='Hugging Face repository name (username/repo-name)')
# Optional arguments
parser.add_argument('--hf-token', type=str, default=None, help='Hugging Face token')
parser.add_argument('--private', action='store_true', help='Make repository private')
parser.add_argument('--no-quantize', action='store_true', help='Skip quantization')
parser.add_argument('--quant-types', nargs='+',
choices=['int8_weight_only', 'int4_weight_only', 'int8_dynamic'],
default=['int8_weight_only', 'int4_weight_only'],
help='Quantization types to apply')
parser.add_argument('--trackio-url', type=str, default=None, help='Trackio Space URL for logging')
parser.add_argument('--experiment-name', type=str, default=None, help='Experiment name for Trackio')
parser.add_argument('--dataset-repo', type=str, default=None, help='HF Dataset repository for experiment storage')
parser.add_argument('--author-name', type=str, default=None, help='Author name for model card')
parser.add_argument('--model-description', type=str, default=None, help='Model description for model card')
return parser.parse_args()
def main():
"""Main function"""
args = parse_args()
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger.info("Starting model recovery and deployment pipeline")
# Initialize pipeline
try:
pipeline = ModelRecoveryPipeline(
model_path=args.model_path,
repo_name=args.repo_name,
hf_token=args.hf_token,
private=args.private,
quantize=not args.no_quantize,
quant_types=args.quant_types,
trackio_url=args.trackio_url,
experiment_name=args.experiment_name,
dataset_repo=args.dataset_repo,
author_name=args.author_name,
model_description=args.model_description
)
# Run complete pipeline
success = pipeline.run_complete_pipeline()
if success:
logger.info("βœ… Model recovery and deployment completed successfully!")
return 0
else:
logger.error("❌ Model recovery and deployment failed!")
return 1
except Exception as e:
logger.error(f"❌ Error during model recovery: {e}")
return 1
if __name__ == "__main__":
exit(main())