Spaces:
Running
Running
File size: 12,893 Bytes
d0d19b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
#!/usr/bin/env python3
"""
Model Recovery and Deployment Script
Recovers trained model from cloud instance, quantizes it, and pushes to Hugging Face Hub
"""
import os
import sys
import json
import argparse
import logging
import subprocess
from pathlib import Path
from typing import Dict, Any, Optional
from datetime import datetime
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
class ModelRecoveryPipeline:
"""Complete model recovery and deployment pipeline"""
def __init__(
self,
model_path: str,
repo_name: str,
hf_token: Optional[str] = None,
private: bool = False,
quantize: bool = True,
quant_types: Optional[list] = None,
trackio_url: Optional[str] = None,
experiment_name: Optional[str] = None,
dataset_repo: Optional[str] = None,
author_name: Optional[str] = None,
model_description: Optional[str] = None
):
self.model_path = Path(model_path)
self.repo_name = repo_name
self.hf_token = hf_token or os.getenv('HF_TOKEN')
self.private = private
self.quantize = quantize
self.quant_types = quant_types or ["int8_weight_only", "int4_weight_only"]
self.trackio_url = trackio_url
self.experiment_name = experiment_name
self.dataset_repo = dataset_repo
self.author_name = author_name
self.model_description = model_description
# Validate HF token
if not self.hf_token:
raise ValueError("HF_TOKEN environment variable or --hf-token argument is required")
logger.info(f"Initialized ModelRecoveryPipeline for {repo_name}")
logger.info(f"Model path: {self.model_path}")
logger.info(f"Quantization enabled: {self.quantize}")
if self.quantize:
logger.info(f"Quantization types: {self.quant_types}")
def validate_model_path(self) -> bool:
"""Validate that the model path contains required files"""
if not self.model_path.exists():
logger.error(f"β Model path does not exist: {self.model_path}")
return False
# Check for essential model files
required_files = ['config.json']
# Check for model files (either safetensors or pytorch)
model_files = [
"model.safetensors.index.json", # Safetensors format
"pytorch_model.bin" # PyTorch format
]
missing_files = []
for file in required_files:
if not (self.model_path / file).exists():
missing_files.append(file)
# Check if at least one model file exists
model_file_exists = any((self.model_path / file).exists() for file in model_files)
if not model_file_exists:
missing_files.extend(model_files)
if missing_files:
logger.error(f"β Missing required model files: {missing_files}")
return False
logger.info("β
Model files validated")
return True
def load_training_config(self) -> Dict[str, Any]:
"""Load training configuration from model directory"""
config_files = [
"training_config.json",
"config_petite_llm_3_fr_1_20250727_152504.json",
"config_petite_llm_3_fr_1_20250727_152524.json"
]
for config_file in config_files:
config_path = self.model_path / config_file
if config_path.exists():
with open(config_path, 'r') as f:
config = json.load(f)
logger.info(f"β
Loaded training config from: {config_file}")
return config
# Fallback to basic config
logger.warning("β οΈ No training config found, using default")
return {
"model_name": "HuggingFaceTB/SmolLM3-3B",
"dataset_name": "OpenHermes-FR",
"training_config_type": "Custom Configuration",
"trainer_type": "SFTTrainer",
"per_device_train_batch_size": 8,
"gradient_accumulation_steps": 16,
"learning_rate": "5e-6",
"num_train_epochs": 3,
"max_seq_length": 2048,
"dataset_size": "~80K samples",
"dataset_format": "Chat format"
}
def load_training_results(self) -> Dict[str, Any]:
"""Load training results from model directory"""
results_files = [
"train_results.json",
"training_summary_petite_llm_3_fr_1_20250727_152504.json",
"training_summary_petite_llm_3_fr_1_20250727_152524.json"
]
for results_file in results_files:
results_path = self.model_path / results_file
if results_path.exists():
with open(results_path, 'r') as f:
results = json.load(f)
logger.info(f"β
Loaded training results from: {results_file}")
return results
# Fallback to basic results
logger.warning("β οΈ No training results found, using default")
return {
"final_loss": "Unknown",
"total_steps": "Unknown",
"train_loss": "Unknown",
"eval_loss": "Unknown"
}
def push_main_model(self) -> bool:
"""Push the main model to Hugging Face Hub"""
try:
logger.info("π Pushing main model to Hugging Face Hub...")
# Import push script
from scripts.model_tonic.push_to_huggingface import HuggingFacePusher
# Load training data
training_config = self.load_training_config()
training_results = self.load_training_results()
# Initialize pusher
pusher = HuggingFacePusher(
model_path=str(self.model_path),
repo_name=self.repo_name,
token=self.hf_token,
private=self.private,
trackio_url=self.trackio_url,
experiment_name=self.experiment_name,
dataset_repo=self.dataset_repo,
hf_token=self.hf_token,
author_name=self.author_name,
model_description=self.model_description
)
# Push model
success = pusher.push_model(training_config, training_results)
if success:
logger.info(f"β
Main model pushed successfully to: https://huggingface.co/{self.repo_name}")
return True
else:
logger.error("β Failed to push main model")
return False
except Exception as e:
logger.error(f"β Error pushing main model: {e}")
return False
def quantize_and_push_models(self) -> bool:
"""Quantize and push models to Hugging Face Hub"""
if not self.quantize:
logger.info("βοΈ Skipping quantization (disabled)")
return True
try:
logger.info("π Starting quantization and push process...")
# Import quantization script
from scripts.model_tonic.quantize_model import ModelQuantizer
success_count = 0
total_count = len(self.quant_types)
for quant_type in self.quant_types:
logger.info(f"π Processing quantization type: {quant_type}")
# Initialize quantizer
quantizer = ModelQuantizer(
model_path=str(self.model_path),
repo_name=self.repo_name,
token=self.hf_token,
private=self.private,
trackio_url=self.trackio_url,
experiment_name=self.experiment_name,
dataset_repo=self.dataset_repo,
hf_token=self.hf_token
)
# Perform quantization and push
success = quantizer.quantize_and_push(
quant_type=quant_type,
device="auto",
group_size=128
)
if success:
logger.info(f"β
{quant_type} quantization and push completed")
success_count += 1
else:
logger.error(f"β {quant_type} quantization and push failed")
logger.info(f"π Quantization summary: {success_count}/{total_count} successful")
return success_count > 0
except Exception as e:
logger.error(f"β Error during quantization: {e}")
return False
def run_complete_pipeline(self) -> bool:
"""Run the complete model recovery and deployment pipeline"""
logger.info("π Starting complete model recovery and deployment pipeline")
# Step 1: Validate model path
if not self.validate_model_path():
logger.error("β Model validation failed")
return False
# Step 2: Push main model
if not self.push_main_model():
logger.error("β Main model push failed")
return False
# Step 3: Quantize and push models
if not self.quantize_and_push_models():
logger.warning("β οΈ Quantization failed, but main model was pushed successfully")
logger.info("π Model recovery and deployment pipeline completed!")
logger.info(f"π View your model at: https://huggingface.co/{self.repo_name}")
return True
def parse_args():
"""Parse command line arguments"""
parser = argparse.ArgumentParser(description='Recover and deploy trained model to Hugging Face Hub')
# Required arguments
parser.add_argument('model_path', type=str, help='Path to trained model directory')
parser.add_argument('repo_name', type=str, help='Hugging Face repository name (username/repo-name)')
# Optional arguments
parser.add_argument('--hf-token', type=str, default=None, help='Hugging Face token')
parser.add_argument('--private', action='store_true', help='Make repository private')
parser.add_argument('--no-quantize', action='store_true', help='Skip quantization')
parser.add_argument('--quant-types', nargs='+',
choices=['int8_weight_only', 'int4_weight_only', 'int8_dynamic'],
default=['int8_weight_only', 'int4_weight_only'],
help='Quantization types to apply')
parser.add_argument('--trackio-url', type=str, default=None, help='Trackio Space URL for logging')
parser.add_argument('--experiment-name', type=str, default=None, help='Experiment name for Trackio')
parser.add_argument('--dataset-repo', type=str, default=None, help='HF Dataset repository for experiment storage')
parser.add_argument('--author-name', type=str, default=None, help='Author name for model card')
parser.add_argument('--model-description', type=str, default=None, help='Model description for model card')
return parser.parse_args()
def main():
"""Main function"""
args = parse_args()
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger.info("Starting model recovery and deployment pipeline")
# Initialize pipeline
try:
pipeline = ModelRecoveryPipeline(
model_path=args.model_path,
repo_name=args.repo_name,
hf_token=args.hf_token,
private=args.private,
quantize=not args.no_quantize,
quant_types=args.quant_types,
trackio_url=args.trackio_url,
experiment_name=args.experiment_name,
dataset_repo=args.dataset_repo,
author_name=args.author_name,
model_description=args.model_description
)
# Run complete pipeline
success = pipeline.run_complete_pipeline()
if success:
logger.info("β
Model recovery and deployment completed successfully!")
return 0
else:
logger.error("β Model recovery and deployment failed!")
return 1
except Exception as e:
logger.error(f"β Error during model recovery: {e}")
return 1
if __name__ == "__main__":
exit(main()) |