SmolFactory / docs /PIPELINE_SUMMARY.md
Tonic's picture
adds sft , quantization, better readmes
40fd629 verified
|
raw
history blame
9.69 kB

SmolLM3 End-to-End Pipeline - Implementation Summary

This document summarizes the comprehensive refactoring and enhancement of the SmolLM3 fine-tuning codebase to create a complete end-to-end pipeline.

🎯 Overview

The pipeline now provides a complete solution from Trackio Space deployment to model push, with integrated monitoring, dataset management, and automated deployment.

πŸ“ Files Created/Modified

Core Pipeline Files

  1. launch.sh - Complete end-to-end pipeline script

    • 16-step comprehensive pipeline
    • Automated environment setup
    • Integrated monitoring and deployment
    • Dynamic configuration generation
  2. setup_launch.py - User configuration helper

    • Interactive setup for user credentials
    • Automatic script configuration
    • Requirements checker generation
  3. test_pipeline.py - Comprehensive testing suite

    • Import testing
    • Component verification
    • CUDA and HF token validation
  4. README_END_TO_END.md - Complete documentation

    • Step-by-step usage guide
    • Troubleshooting section
    • Advanced configuration options

Scripts and Utilities

  1. scripts/trackio_tonic/trackio_api_client.py - API client for Trackio

    • Complete API client implementation
    • Error handling and retry logic
    • Support for both JSON and SSE responses
  2. scripts/trackio_tonic/deploy_trackio_space.py - Space deployment

    • Automated HF Space creation
    • File upload and configuration
    • Space testing and validation
  3. scripts/trackio_tonic/configure_trackio.py - Configuration helper

    • Environment variable setup
    • Dataset repository configuration
    • Usage examples and validation
  4. scripts/model_tonic/push_to_huggingface.py - Model deployment

    • Complete model upload pipeline
    • Model card generation
    • Training results documentation
  5. scripts/dataset_tonic/setup_hf_dataset.py - Dataset setup

    • HF Dataset repository creation
    • Initial experiment data structure
    • Dataset access configuration

Source Code Updates

  1. src/monitoring.py - Enhanced monitoring

    • HF Datasets integration
    • Trackio API client integration
    • Comprehensive metrics logging
  2. src/train.py - Updated training script

    • Monitoring integration
    • HF Datasets support
    • Enhanced error handling
  3. src/config.py - Configuration management

    • Dynamic config loading
    • Multiple config type support
    • Fallback mechanisms
  4. src/data.py - Enhanced dataset handling

    • Multiple format support
    • Automatic conversion
    • Bad entry filtering
  5. src/model.py - Model wrapper

    • SmolLM3-specific optimizations
    • Flash attention support
    • Long context handling
  6. src/trainer.py - Training orchestration

    • Monitoring callback integration
    • Enhanced logging
    • Checkpoint management

πŸ”§ Key Improvements

1. Import Path Fixes

  • Fixed all import paths to work with the refactored structure
  • Added proper sys.path handling for cross-module imports
  • Ensured compatibility between different script locations

2. Monitoring Integration

  • Trackio Space: Real-time experiment tracking
  • HF Datasets: Persistent experiment storage
  • System Metrics: GPU, memory, and CPU monitoring
  • Training Callbacks: Automatic metric logging

3. Dataset Handling

  • Multi-format Support: Prompt/completion, instruction/output, chat formats
  • Automatic Conversion: Handles different dataset structures
  • Validation: Ensures data quality and completeness
  • Splitting: Automatic train/validation/test splits

4. Configuration Management

  • Dynamic Generation: Creates configs based on user input
  • Multiple Types: Support for different training configurations
  • Environment Variables: Proper integration with environment
  • Validation: Ensures configuration correctness

5. Deployment Automation

  • Model Upload: Complete model push to HF Hub
  • Model Cards: Comprehensive documentation generation
  • Training Results: Complete experiment documentation
  • Testing: Automated model validation

πŸš€ Pipeline Steps

The end-to-end pipeline performs these 16 steps:

  1. Environment Setup - System dependencies and Python environment
  2. PyTorch Installation - CUDA-enabled PyTorch installation
  3. Dependencies - All required Python packages
  4. Authentication - HF token setup and validation
  5. Trackio Deployment - HF Space creation and configuration
  6. Dataset Setup - HF Dataset repository creation
  7. Trackio Configuration - Environment and dataset configuration
  8. Training Config - Dynamic configuration generation
  9. Dataset Preparation - Download and format conversion
  10. Parameter Calculation - Training steps and batch calculations
  11. Training Execution - Model fine-tuning with monitoring
  12. Model Push - Upload to HF Hub with documentation
  13. Model Testing - Validation of uploaded model
  14. Summary Report - Complete training documentation
  15. Resource Links - All online resource URLs
  16. Next Steps - Usage instructions and recommendations

πŸ“Š Monitoring Features

Trackio Space Interface

  • Real-time training metrics
  • Experiment comparison
  • System resource monitoring
  • Training progress visualization

HF Dataset Storage

  • Persistent experiment data
  • Version-controlled history
  • Collaborative sharing
  • Automated backup

Comprehensive Logging

  • Training metrics (loss, accuracy, etc.)
  • System metrics (GPU, memory, CPU)
  • Configuration parameters
  • Training artifacts

πŸ”§ Configuration Options

User Configuration

# Required
HF_TOKEN="your_token"
HF_USERNAME="your_username"

# Optional
MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
DATASET_NAME="HuggingFaceTB/smoltalk"

Training Parameters

BATCH_SIZE=2
GRADIENT_ACCUMULATION_STEPS=8
LEARNING_RATE=5e-6
MAX_EPOCHS=3
MAX_SEQ_LENGTH=4096

Monitoring Configuration

TRACKIO_DATASET_REPO="username/trackio-experiments"
EXPERIMENT_NAME="smollm3_finetune_YYYYMMDD_HHMMSS"

πŸ› οΈ Error Handling

Comprehensive Error Handling

  • Import error detection and reporting
  • Configuration validation
  • Network timeout handling
  • Graceful degradation

Debugging Support

  • Detailed logging at all levels
  • Component-specific error messages
  • Fallback mechanisms
  • Testing utilities

πŸ“ˆ Performance Optimizations

Training Optimizations

  • Flash Attention for efficiency
  • Gradient checkpointing for memory
  • Mixed precision training
  • Optimized data loading

Monitoring Optimizations

  • Asynchronous logging
  • Batch metric updates
  • Efficient data storage
  • Minimal overhead

πŸ”„ Integration Points

Hugging Face Ecosystem

  • HF Hub: Model and dataset storage
  • HF Spaces: Trackio monitoring interface
  • HF Datasets: Experiment data persistence
  • HF CLI: Authentication and deployment

External Services

  • Trackio: Experiment tracking
  • CUDA: GPU acceleration
  • PyTorch: Deep learning framework
  • Transformers: Model library

🎯 Usage Workflow

1. Setup Phase

python setup_launch.py  # Configure with user info
python test_pipeline.py # Verify all components

2. Execution Phase

chmod +x launch.sh      # Make executable
./launch.sh            # Run complete pipeline

3. Monitoring Phase

  • Track progress in Trackio Space
  • Monitor metrics in real-time
  • Check logs for issues
  • Validate results

4. Results Phase

  • Access model on HF Hub
  • Review training summary
  • Test model performance
  • Share results

πŸ“‹ Quality Assurance

Testing Coverage

  • Import testing for all modules
  • Script availability verification
  • Configuration validation
  • CUDA and token testing
  • Component integration testing

Documentation

  • Comprehensive README
  • Step-by-step guides
  • Troubleshooting section
  • Advanced usage examples

Error Recovery

  • Graceful error handling
  • Detailed error messages
  • Recovery mechanisms
  • Fallback options

πŸš€ Future Enhancements

Planned Improvements

  • Multi-GPU training support
  • Distributed training
  • Advanced hyperparameter tuning
  • Custom dataset upload
  • Model evaluation metrics
  • Automated testing pipeline

Extensibility

  • Plugin architecture for custom components
  • Configuration templates
  • Custom monitoring backends
  • Advanced deployment options

πŸ“Š Success Metrics

Pipeline Completeness

  • βœ… All 16 steps implemented
  • βœ… Error handling at each step
  • βœ… Monitoring integration
  • βœ… Documentation complete

User Experience

  • βœ… Simple setup process
  • βœ… Clear error messages
  • βœ… Comprehensive documentation
  • βœ… Testing utilities

Technical Quality

  • βœ… Import path fixes
  • βœ… Configuration management
  • βœ… Monitoring integration
  • βœ… Deployment automation

πŸŽ‰ Conclusion

The SmolLM3 end-to-end pipeline provides a complete solution for fine-tuning with integrated monitoring, automated deployment, and comprehensive documentation. The refactored codebase is now production-ready with proper error handling, testing, and user experience considerations.

Key Achievements:

  • Complete end-to-end automation
  • Integrated monitoring and tracking
  • Comprehensive error handling
  • Production-ready deployment
  • Extensive documentation
  • Testing and validation suite

The pipeline is now ready for users to easily fine-tune SmolLM3 models with full monitoring and deployment capabilities.