Spaces:
Running
Running
π§ Improved Monitoring Integration Guide
Overview
The monitoring system has been enhanced to support Hugging Face Datasets for persistent experiment storage, making it ideal for deployment on Hugging Face Spaces and other cloud environments.
π Key Improvements
1. HF Datasets Integration
- β Persistent Storage: Experiments are saved to HF Datasets repositories
- β
Environment Variables: Configurable via
HF_TOKEN
andTRACKIO_DATASET_REPO
- β Fallback Support: Graceful degradation if HF Datasets unavailable
- β Automatic Backup: Local files as backup
2. Enhanced Monitoring Features
- π Real-time Metrics: Training metrics logged to both Trackio and HF Datasets
- π§ System Metrics: GPU memory, CPU usage, and system performance
- π Training Summaries: Comprehensive experiment summaries
- π‘οΈ Error Handling: Robust error logging and recovery
3. Easy Integration
- π Automatic Setup: Environment variables automatically detected
- π Configuration: Simple setup with environment variables
- π Backward Compatible: Works with existing Trackio setup
π Environment Variables
Variable | Required | Default | Description |
---|---|---|---|
HF_TOKEN |
β Yes | None | Your Hugging Face token |
TRACKIO_DATASET_REPO |
β No | tonic/trackio-experiments |
Dataset repository |
TRACKIO_URL |
β No | None | Trackio server URL |
TRACKIO_TOKEN |
β No | None | Trackio authentication token |
π οΈ Setup Instructions
1. Get Your HF Token
# Go to https://huggingface.co/settings/tokens
# Create a new token with "Write" permissions
# Copy the token
2. Set Environment Variables
# For HF Spaces, add these to your Space settings:
HF_TOKEN=your_hf_token_here
TRACKIO_DATASET_REPO=your-username/your-dataset-name
# For local development:
export HF_TOKEN=your_hf_token_here
export TRACKIO_DATASET_REPO=your-username/your-dataset-name
3. Create Dataset Repository
# Run the setup script
python setup_hf_dataset.py
# Or manually create a dataset on HF Hub
# Go to https://huggingface.co/datasets
# Create a new dataset repository
4. Test Configuration
# Test your setup
python configure_trackio.py
# Test dataset access
python test_hf_datasets.py
π Usage Examples
Basic Training with Monitoring
# Train with default monitoring
python train.py config/train_smollm3_openhermes_fr.py
# Train with custom dataset repository
TRACKIO_DATASET_REPO=your-username/smollm3-experiments python train.py config/train_smollm3_openhermes_fr.py
Advanced Training Configuration
# Train with custom experiment name
python train.py config/train_smollm3_openhermes_fr.py \
--experiment_name "smollm3_french_tuning_v2" \
--hf_token your_token_here \
--dataset_repo your-username/french-experiments
Training Scripts with Monitoring
# All training scripts now support monitoring:
python train.py config/train_smollm3_openhermes_fr_a100_balanced.py
python train.py config/train_smollm3_openhermes_fr_a100_large.py
python train.py config/train_smollm3_openhermes_fr_a100_max_performance.py
python train.py config/train_smollm3_openhermes_fr_a100_multiple_passes.py
π What Gets Monitored
Training Metrics
- Loss values (training and validation)
- Learning rate
- Gradient norms
- Training steps and epochs
System Metrics
- GPU memory usage
- GPU utilization
- CPU usage
- Memory usage
Experiment Data
- Configuration parameters
- Model checkpoints
- Evaluation results
- Training summaries
Artifacts
- Configuration files
- Training logs
- Evaluation results
- Model checkpoints
π Viewing Results
1. Trackio Interface
- Visit your Trackio Space
- Navigate to "Experiments" tab
- View real-time metrics and plots
2. HF Dataset Repository
- Go to your dataset repository on HF Hub
- Browse experiment data
- Download experiment files
3. Local Files
- Check local backup files
- Review training logs
- Examine configuration files
π οΈ Configuration Examples
Default Setup
# Uses default dataset: tonic/trackio-experiments
# Requires only HF_TOKEN
Personal Dataset
export HF_TOKEN=your_token_here
export TRACKIO_DATASET_REPO=your-username/trackio-experiments
Team Dataset
export HF_TOKEN=your_token_here
export TRACKIO_DATASET_REPO=your-org/team-experiments
Project-Specific Dataset
export HF_TOKEN=your_token_here
export TRACKIO_DATASET_REPO=your-username/smollm3-experiments
π§ Troubleshooting
Issue: "HF_TOKEN not found"
# Solution: Set your HF token
export HF_TOKEN=your_token_here
# Or add to HF Space environment variables
Issue: "Failed to load dataset"
# Solutions:
# 1. Check token has read access
# 2. Verify dataset repository exists
# 3. Run setup script: python setup_hf_dataset.py
Issue: "Failed to save experiments"
# Solutions:
# 1. Check token has write permissions
# 2. Verify dataset repository exists
# 3. Check network connectivity
Issue: "Monitoring not working"
# Solutions:
# 1. Check environment variables
# 2. Run configuration test: python configure_trackio.py
# 3. Check logs for specific errors
π Benefits
For HF Spaces Deployment
- β Persistent Storage: Data survives Space restarts
- β No Local Storage: No dependency on ephemeral storage
- β Scalable: Works with any dataset size
- β Secure: Private dataset storage
For Experiment Management
- β Centralized: All experiments in one place
- β Searchable: Easy to find specific experiments
- β Versioned: Dataset versioning for experiments
- β Collaborative: Share experiments with team
For Development
- β Flexible: Easy to switch between datasets
- β Configurable: Environment-based configuration
- β Robust: Fallback mechanisms
- β Debuggable: Comprehensive logging
π― Next Steps
- Set up your HF token and dataset repository
- Test the configuration with
python configure_trackio.py
- Run a training experiment to verify monitoring
- Check your HF Dataset repository for experiment data
- View results in your Trackio interface
π Related Files
monitoring.py
- Enhanced monitoring with HF Datasets supporttrain.py
- Updated training script with monitoring integrationconfigure_trackio.py
- Configuration and testing scriptsetup_hf_dataset.py
- Dataset repository setuptest_hf_datasets.py
- Dataset access testingENVIRONMENT_VARIABLES.md
- Environment variable referenceHF_DATASETS_GUIDE.md
- Detailed HF Datasets guide
π Your experiments are now persistently stored and easily accessible!